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1 Introduction

The Ewald-Oseen extinction theorem provides an insight into how materials re-

spond when light is shone onto them. When I say ”material”, think of substances

like water or glass for which you can easily imagine light going through. The theo-

rem also applies to opaque materials but transparent stuff make better examples.

So, when you take your flashlight and shine light onto the pond in your backyard,

what happens to the light and the water? How does it happen? These are the

questions that the theorem answers.

Light is an electromagnetic wave. Some people reserve the word ”light” specifi-

cally for the ”visible light” that your eyes can see, excluding, for example, the Wi-Fi

signals your mobile phone sends and receives, or the x-rays that go through your

body when you have a cat scan at the hospital. Other people use ”light” more flex-

ibly, including infrared (lower frequency) and ultraviolet (higher frequency) waves

too. For my purposes here, electromagnetic wave and light mean the same thing

and I will use them interchangeably.

The theorem falls into the branch of physics called Electrodynamics which

explains, in the form of four equations, how the light behaves at the fundamental

level. These equations are called Maxwell’s equations. It is my job to solve and

use the results of those equations to draw you an intuative picture. Historically,

Paul Peter Ewald (in 1912) and Carl Wilhelm Oseen (in 1915) were the first people

to conceive of the ideas behind this theory, hence the name. The theory has come

to be what it is today only after several corrections and modifications along the

years, which make it difficult to track the current version. This is perhaps the sole

reason why it is still widely misunderstood, even by experienced scientists. This is

also one of the reasons why I decided to write my take on the theorem, trying to

make it comprehensible by a broad range of readers from electromagnetics veterans

to curious laymen. With an aim to satisfy the readers from the opposite ends of

this spectrum, I present the topic in a popular science fashion but also give the

mathematical derivations in the appendices.

The theorem adopts a microscopic point of view and derives the manifestations

that one observes in macroscopic world (I will shortly explain what exactly I mean

by microscopic and macroscopic). The way the theorem visualizes the reflection

and transmission of an electromagnetic wave is enlightening, on which I hope
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you will agree with me by the time you finish reading this paper. I believe that

a thorough understanding of the physical phenomena is a key characteristic of

an accomplished scientist, regardless of the subject of study. This paper aims

to advance this understanding by explaining a usually overlooked and seemingly

complicated topic in an appealing manner.

2 Remind me, what happens when light enters

into water?

Look at Figure 1. It shows a ray of light entering the water in the glass. The light

refracts (bends) as it crosses the boundary between air and water. This is why the

straw in a glass of your favorite drink (mine is water; yes, I am that boring) looks

broken, a phenomenon I am sure many of you observed. Note that some of the

light also reflects off the water’s surface, which I am currently not interested in.

Figure 1: Light rays in water

The light also slows down in water. At least, this is the common understanding

within the scientific community. These two properties of light (refraction and

slowing down) are very intuitive: First, you can definitely observe refraction as

in Figure 1, and second, you can imagine almost everything slowing down when

they enter the water. For example, a bullet shot into the water would slow down

tremendously and come to a full stop after a few meters. Even you would slow

down in water, as it is harder to move in water than in air. The reason is clear
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and sound: The water is denser than air. Therefore, it makes sense to expect the

light to behave similarly and slow down in water.

I have established two properties of light: It slows down and changes its direc-

tion when it enters a denser medium. All I did was make an observation and use

an analogy. This is, of course, far from convincing, so I will talk about how these

are proven mathematically in the next section.

3 Proving how lights slows down and changes

direction

One uses Maxwell’s equations and boundary conditions to prove these properties

mathematically. As I said, Maxwell’s equations are simply the rules that elec-

tromagnetic waves obey, just like planets obey the rules of gravitation. Then,

what are boundary conditions? They are the general results scientists derive from

Maxwell’s equations, so that they can use them when they want to solve a specific

problem.

Figure 2: Boundary conditions

Look at Figure 2. A tap pumps water into a water pipe. The water comes out

at the other end of the pipe. The boundary is defined as the input and output

openings of the pipe. However much water is pumped, it will all exit through the

output opening (unless there is a crack in the pipe). This rule is what is called the

boundary condition: What goes in must come out! The shape or the windings of

the pipe do not matter. If I know where the input and output openings are, then
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I can easily calculate the output for any given input. In electromagnetics, a very

similar boundary condition is used. The only difference is that it is light which

flows, not water.

Boundary conditions make my life a lot easier. The calculations are much

simpler, but now I have a different problem. I do not know what the heck is going

on in the water pipe! This is exactly where the Ewald-Oseen extinction theorem

comes in and explains what is happening microscopically (things that are small

and cannot be observed easily, i.e. inside the pipe) in addition to the macroscopic

results that I can already calculate (things that are big and easily observable,

i.e. the amount of water that comes out and where it comes out). By opting

for boundary conditions, I traded the information about the pipe’s interior with

computational ease.

As I said, the conventional approach for solving an electromagnetic problem is

using boundary conditions. Other approaches, including the microscopic point of

view, usually prove to be too difficult. I will investigate the simplest case in this

paper. However, I will be able to derive the most important conclusions of the

Ewald-Oseen extinction theorem.

You might very well ask why I even care about what is happening inside the

pipe. I care because I am curious. I have an inquisitive mind, and I believe so do

you! In the end, it pays to have quesitoned every single detail. You might find

errors in your current understanding of the nature of things, as you will in this

case. I will show that the two properties of light that I found previously (slowing

down and refracting/bending) are indeed wrong. They are illusions caused by the

oversimplification I did by defining the boundary conditions.

4 What is this Ewald-Oseen extinction theorem

about?

Now, I define the situation in a more scientific (and less fun) way. Figure 3 is the

same as the water in the glass in Figure 1, except that I assume half of the universe

is filled with a dielectric material (upper region), the other half is vacuum (lower

region) in Figure 3. I use the word dielectric to refer to the class of materials such

as water, glass, oil, but not metals such as copper and gold.
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The electromagnetic plane wave initially travels in the semi-infinite vacuum,

and then hits the boundary of the semi-infinite dielectric medium at z=0. (Plane

wave is a fancy way of saying that the wave travels in a single direction and has

only one frequency/color. There are other types of waves which are a mixture

of several frequencies and travel in many directions.) Part of the incident wave

reflects back into the vacuum (indicated with kr), and the remainder is transmitted

into the dielectric medium (indicated with kt). The k’s are vectors indicating the

directions of the waves. We, scientists, use ϵ and µ parameters instead of words

like ”water” or ”air” to differentiate between different materials (ϵwater = 1.77, and

ϵvacuum = 1, which is why we call it ϵ0. µ’s are assumed to be 1 for simplicity). I

will use those parameters later in my calculations.

Figure 3: Electromagnetic wave incident on a semi-infinite dielectric medium -

Macroscopic point of view

Figure 3 depicts one of the simplest electromagnetic phenomena; I can use

Maxwell’s boundary conditions to find the reflected and the transmitted waves. I

will not do that, but the conclusions I would arrive at are the following.

• The reflection occurs at the same angle as the angle of incidence.

• Transmitted wave travels at a different angle and at a slower speed.
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• Both the transmitted and the reflected waves are still plane waves.

I believe that these conclusions are remarkable. Let me explain why. A di-

electric is a collection of atoms (or molecules), and rest is simply empty space as

shown in Figure 4. Atoms occupy only a tiny fraction of the material, so most

of it is vacuum. Figure 4 is, if you prefer, the interior of the water pipe. All the

incident wave does is excite those atoms. The behaviour of an individual atom

under excitation is much more complex than a plane wave. An atom radiates

electromagnetic waves in all directions (the exact derivation is given in Appendix

A). If I did not know any better, I would expect a chaos of electromagnetic waves.

Figure 4: Ewald-Oseen extinction theorem - Microscopic point of view (Blue:

Atoms, Red: Electromagnetic radiation)

First, the incident wave travels at the speed of light in vacuum, c, which is

about 300,000 kilometers per second. The speed of light in vacuum is a universal

constant. The waves created by the atoms also travel at the speed of light c because

they basically travel in vacuum. Then, how does the wave actually slow down?

Second, the incident wave travels in a single direction. The atoms radiate waves

in all directions. So, how do I observe the light in water as if it is going in a single
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and different direction?

Do these atoms or molecules conspire to give us these unexpected results, or is

there something else at play? The conventional way of solving this problem (using

boundary conditions) does not answer any of these questions because it does not

really explain how the dielectric behaves at the microscopic level. It assumes that

the medium has a macroscopic description and follows from there. I will answer

all of these questions using the Ewald-Oseen extinction theorem. I will calculate

the fields generated by the atoms, sum them up with my incident field to find the

resultant electromagnetic waves, and also answer the questions in the meantime.

5 Mistaking simplifications with the reality

In the previous sections, I have provided two contradictory expectations about the

behaviour of light! First, I gave examples of things that slow down in water or

look broken when partially in water, and said the logical guess would be that the

light behaved the same way. Afterwards, I drew a microscopic picture with atoms

and claimed that there is no reason for the light to slow down because everywhere

is basically vacuum. In this section, I would like to talk about the danger I put

myself in when I use my equations and try to apply my everyday experiences to a

phenomenon which I cannot directly observe.

Take the boundary conditions for instance. In Figure 5, I give a mundane

example. I get a ball and throw it against the wall. It travels in air mostly

undisturbed. It hits the wall and it bounces (reflects) back to me. It also transmits

some of its energy to the wall as heat or vibration due to collision. In this picture,

it is easy to identify the role of the boundary between the wall and the air. It

is where the collision, thus the energy transfer takes place. If there were not a

boundary, then there would not be a collision and the ball would not bounce at

all.

At first sight, all of these arguments seem to apply to light as well. After all,

I can define the electromagnetic boundary conditions and use them to solve real

problems and verify my observations. But, here is the catch: A closer look at

what I call a material reveals that it is merely a collection of atoms and therefore

the definition of the boundary becomes vague (Figure 4). Where exactly is the

boundary? If it is the first layer of atoms, what about the next layers of atoms
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Figure 5: Throwing a ball against the wall - The role of the boundary

which will surely interact with the incident light? What is reflection, if the incident

light just goes through the atoms which, in return, generate electromagnetic waves

the go in all directions? All of these concepts such as material, boundary and

reflection lose their meanings at the microscopic level.

What I should deduce from this discussion is that I must be careful when I

try to interpret the nature (how things really are) using my equations and past

experiences. The electromagnetic boundary conditions are just mathematical tools

that help me get to the end result. They do not show the physical picture behind

the scenes. I agree with Richard Feynman. Nature is what it is, not what I expect

it to be, or not what I think is logical. Meaningless as it seems to ask how much

of the ball reflects back or if it goes through the wall, it is wrong not to ask such

questions when encountered with new physical phenomena. This theorem is the

fruit of asking such questions.

Section 6 is where I derive the entire theorem. I will arrive at the following

conclusions:

• The incident light neither reflects nor refracts when it enters a new medium.

It does not slow down either. All it does is travel in a single direction

everywhere and excite the atoms along the way.
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• In response, the excited atoms produce waves which also travel at the speed

of light in vacuum. When all the waves from the atoms are added up in the

lower half-space (see Figure 4), a portion of those waves exactly cancel the

incident field. What is left is a wave that seems to travel in a single direction

at a lower speed. In reality, it is a combination of many waves which travel

with speed c. In the upper half-space, again, the summation of all the waves

from the atoms look like a single wave which travels in a single direction

(observed as the reflected wave).

I highly encourage you to read the next section and witness how the conclusions

above come about with your own eyes. However, if you do not want to deal with

any math, this paragraph marks the end of this paper for you.

Those who are not convinced yet, I present you the thorough proof of the

theorem. I would not be convinced either. I would demand strong evidence that

backs such outrageous claims. The next section follows the same scenario: An

initial wave excites the atoms approximated as electric dipoles, and then the waves

of the dipoles are added. Although very easy to state in words, a mathematical

proof is a little bit more involved. It is my aim to present it as clearly as possible.

6 Derivation of Ewald-Oseen extinction theorem

6.1 Setting up the problem

I will assume a normally incident plane wave with time depedence e−iωt. The

incident electric field is

Ei(z, t) = x̂Ei(z)e
−iωt = x̂Ei0e

ikz−iωt (1)

I also define the total field and the field due to the dipoles as

Et(z, t) = x̂Et(z)e
−iωt (2)

Ed(z, t) = x̂Ed(z)e
−iωt (3)

where t stands for total and d stands for dipole. Then, the total field at any given

point r is the sum of incident and dipole fields (superposition principle).

Et(z, t) = Ei(z, t) + Ed(z, t) (4)
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Here is the Maxwell’s equations to refer to in the following sections.

∇ · E =
ρ

ϵ0
(5)

∇ ·B = 0 (6)

∇× E = −∂B

∂t
(7)

∇×B = µ0J+ µ0ϵ0
∂E

∂t
(8)

or in macroscopic media

∇ ·D = ρext (9)

∇ ·B = 0 (10)

∇× E = −∂B

∂t
(11)

∇×H = Jext +
∂D

∂t
(12)

where ext stands for external.

6.2 Fields of a single dipole

I would like to find Ed(z, t), so that I can calculate Et(z, t) and see if it matches

my expectations. First, I need to find the fields generated by a single dipole. I will

take it from the top and start with Maxwell’s equations for completeness. Since

∇ ·B = 0 and ∇ · (∇×A) = 0 for any A, I can define a vector potential A such

that ∇×A = B. Then,

∇× E = − ∂

∂t
∇×A −→ ∇×

(
E+

∂A

∂t

)
= 0 (13)

Similarly, I can define a scalar potential Φ such that

−∇Φ = E+
∂A

∂t
−→ E = −∂A

∂t
−∇Φ (14)

Using equation (5) (Gauss’ law),

∇2Φ +
∂

∂t
∇ ·A = − ρ

ϵ0
(15)
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Using equation (8) (Ampere’s law),

∇2A− µ0ϵ0
∂2A

∂t2
−∇

(
∇ ·A− µ0ϵ0

∂Φ

∂t

)
= −µ0J (16)

I have only defined the curl of the vector potential A. This means I am free to

choose the divergence however I want and I choose it as follows.

∇ ·A = µ0ϵ0
∂Φ

∂t
(17)

This choice is called the Lorenz gauge. Another widely known choice is the

Coulomb gauge, which I will not discuss. Using this gauge in equations (15)

and (16),

∇2Φ− µ0ϵ0
∂2Φ

∂t2
= − ρ

ϵ0
(18)

∇2A− µ0ϵ0
∂2A

∂t2
= −µ0J (19)

The solution for the vector potential A is given by

A(r, t) =
µ0

4π

∫
J(r′, tr)

R
d3r′ =

µ0

4π

∫
J(r′)

e−iωtr

R
d3r′ =

µ0

4π

∫
J(r′)

eikR−iωt

R
d3r′

(20)

where tr = t−R/c is the retarded time, r is the observation point, r’ is the location

of the dipole, and R = |r− r′|, as seen in Figure 6. The solution for Φ is the same

as A, except that µ0J is replaced by ρ/ϵ0. If you are curious about how I obtained

the solution to these differential equations, see Appendix D.

I am considering ideal dipoles which are infinitesimally small in size; therefore,

we can take the exponential and 1/r term out of the integral in equation (20).

A(r) =
µ0

4π

eikR

R

∫
J(r′)d3r′ (21)

I will evaluate this integral with the help of the continuity equation.

∇ · J = −∂ρ

∂t
= iωρ (22)
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Figure 6: A single dipole in free space.

Apply integration by parts to the integral.∫
J(r′)d3r′ = r · J|r=0 −

∫
r′∇′ · J(r′)d3r′ (23)

where the first term on the right-hand side is zero. Substitute equation (22) and

(23) into (21).

A(r) = −iωµ0

4π

eikR

R

∫
r′ρ(r′)d3r′ = −iωµ0

4π
p
eikR

R
(24)

where

p =

∫
r′ρ(r′)d3r′ (25)

is the electrical dipole moment. Now, I use the Lorenz gauge conditions to find

the fields.

B = ∇×A (26)

E = −∇ϕ− ∂A

∂t
(27)
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Evaluating equation (26) gives

H =
1

µ0

∇×A =
ω

4π
eikR

(
k

R
+

i

R2

)
R̂× p (28)

Putting H into the last Maxwell’s equation (8),

E =
i

ωϵ0
∇×H

=
eikR

4πϵ0

[(
3R̂(R̂ · p)− p

)( 1

R3
− ik

R2

)
−
(
R̂(R̂ · p)− p

) k2

R

]
(29)

Deriving equations (28) and (29) is indeed cumbersome, but nothing more

than a vector algebra exercise. The complete derivation is given in Appendix A

for interested readers.

6.3 Summation of all dipoles

I have found the fields of a single dipole, so what is left is to find Ed(r, t) by

summing the fields of all dipoles. A dipole will be polarized due to the total

electric field acting on it. In this case, the total field acting on a dipole is the

incident electric field plus the fields generated by all the other dipoles! This is,

indeed, the same as the total electric field I defined previously in equation (2),

namely Et(z, t) = x̂Et(z)e
−iωt. Moreover, the direction of the polarization will be

in the direction of the total electric field. So,

p ∝ Et(z)x̂ (30)

If I assume that the dipoles form a continuous distribution in z > 0 region, the

dipole moment of a unit volume will simply be the polarization density of the

medium.

p = (ϵ− ϵ0)Et(z)e
−iωtx̂ (31)

This is justified because there are already many dipoles in the smallest volume that

I can possibly be interested in. Now, I have everything to construct the integral

over E in equation (29) in z > 0 region. Putting p into (29) and multiplying by x̂

to get the amplitude,
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Ed(z) =
ϵr − 1

4π

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

0

dz′

× Et(z
′)eik0R

[(
3(R̂ · x̂)2 − 1

)( 1

R3
− ik0

R2

)
−
(
3(R̂ · x̂)2 − 1

) k2
0

R

]
(32)

where ϵr is the relative permittivity, and k is replaced with k0 to emphasize that

it is the free space wave vector.

Evaluating the integrals over x′ and y′ is cumbersome. I will simply give the

result here. Curious readers can check Appendix B.

Ed(z) =
1

2
ik0(ϵr − 1)

∫ ∞

0

dz′Et(z
′)eik0|z−z′| (33)

Let me explian this integral. The only discontinuity in the space occurs in

z direction, so the results must be invariant with respect to x and y directions.

Integrating over x and y gives us a slice of dipoles in the z direction. This slice

radiates plane waves (due to the polarizing field acting on it) in both positive and

negative z directions. Each slice radiates a plane wave with a different magnitude

and phase, and all this integral does is add these plane waves coherently. That’s

it! Actually, a different approach to prove Ewald-Oseen extinction theorem starts

with this observation [2].

Finally, I can write the total field as

Et(z) = Ei0e
ik0z +

1

2
ik0(ϵr − 1)

∫ ∞

0

dz′Et(z
′)eik0|z−z′| (34)

6.4 Electric field inside the dielectric

I start by dividing the integral in (34) into two parts.

Et(z) =Ei0e
ik0z +

1

2
ik0(ϵr − 1)

×
[
eik0z

∫ z

0

dz′Et(z
′)e−ik0z′ + e−ik0z

∫ ∞

z

dz′Et(z
′)eik0z

′
]

(35)

A visual of this integral is shown in Figure 7. The first integral from 0 to z

represent forward propagating waves and originate from the dipole layers below

z. The second integral represent backward propagating waves and originate from
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layers above z. This is exactly the same observation we made in the previous

section. Notice that Et is a function of its integral. To make sense of this, I

visualize the following series of events: First, a single dipole is excited by the

summation of the incident field and the fields due to all other dipoles. This dipole,

in return, generates fields which affect all other dipoles. Then, all the other dipoles

adjust their fields accordingly and act upon the first dipole, and so on. This is, of

course, a transient picture of what is happening. Digging too much into it may lead

to wrong impressions. After all, scientists almost always observe the steady-state

result.

Figure 7: Forward and backward propagating waves originating from different

layers and contributing the total field at the observation layer

I use a trial solution to solve the equation for z > 0,

Et(z) = Et0e
ikz (36)

where k and Et0 are unknown.

Et(z) =Ei0e
ik0z +

1

2
ik0(ϵr − 1)

×
[
eik0zEt0

∫ z

0

dz′ei(k−k0)z′ + e−ik0zEt0

∫ ∞

z

dz′ei(k+k0)z′
]

(37)
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Et(z) =Ei0e
ik0z +

1

2
ik0(ϵr − 1)Et0

×
[

eik0z

i(k − k0)

(
ei(k−k0)z − 1

)
− e−ik0z

i(k + k0)
ei(k+k0)z

]
(38)

Et(z) =eik0z
[
Ei0 −

1

2

k0(ϵr − 1)

k − k0
Et0

]
+ eikz

k2
0(ϵr − 1)

k2 − k2
0

Et0 (39)

Note that while evaluating the integrals I used

lim
z→+∞

eikz = 0 (40)

This is mathematically incorrect, but I use my physical intuition to see that the

waves will sooner or later decay and won’t be able to reach infinity.

For equation (39) to hold, I need the following two conditions.

k2
0(ϵr − 1)

k2 − k2
0

= 1 (41)

and

Ei0 −
1

2

k0(ϵr − 1)

k − k0
Et0 = 0 (42)

From condition (41), I get k2 = k2
0ϵr −→ k = k0

√
ϵr = k0n. From condition (42),

we get

Et0 = Ei0
2k0(n− 1)

k0(n2 − 1)
= Ei0

2

n+ 1
(43)

These are the well-known results of the conventional (macroscopic) approach.

Now, I calculate the field generated by the dipoles. Putting Et into equation

(33),

Ed(z) =
1

2
ik0(ϵr − 1)

∫ ∞

0

dz′eik0|z−z′|eikz
′ 2

n+ 1
Ei0

= ik0(n− 1)Ei0

[
eik0z

∫ z

0

dz′ei(k−k0)z′ + e−ik0z

∫ ∞

z

dz′ei(k+k0)z′
]

= ik0(n− 1)Ei0

[
eik0z

i(k − k0)

(
ei(k−k0)z − 1

)
− e−ik0z

i(k + k0)
ei(k+k0)z

]
= −Ei0e

ik0z +
2

n+ 1
Ei0e

ik0nz (44)
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I see that it exactly cancels the incident field inside the dielectric, and the remaining

wave travels at the speed c/n! This proves the Ewald-Oseen extinction theorem.

While deriving the theorem, I solved Maxwell’s equations for a single dipole

and summed up the fields generated by all the dipoles. I neither used nor defined

Maxwell’s boundary conditions. I also did not define what a ’medium’ is, or what

reflected waves and transmitted waves are. These definitions are macroscopic in

nature and therefore required in the macroscopic approach. It is exactly these

macroscopic definitions that mask the underlying physical phenomena. Yes, they

simplify the mathematics a lot but they also lack insight.

6.5 Electric field outside the dielectric

Now I solve equation (34), shown in equation (45) below, for z < 0 to find the

reflected field. The derivation is very similar to the previous one.

Et(z) = Ei0e
ik0z +

1

2
ik0(ϵr − 1)

∫ ∞

0

dz′Et(z
′)eik0|z−z′| (45)

An important note: Et(z) that I am trying to find is for z < 0, but Et(z
′) inside

the integral is for z′ > 0 because that is where the integral is evaluated (where

the dipoles are located). In other words, Et(z
′) is the total field I have found for

z′ > 0 in the previous section. Therefore, using Et(z
′) = Et0e

ikz′ ,

Et(z) = Ei0e
ik0z +

1

2
ik0(ϵr − 1)

∫ ∞

0

dz′Et0e
ikz′eik0(z

′−z)

= Ei0e
ik0z +

1

2
ik0Et0(ϵr − 1)e−ik0z

∫ ∞

0

dz′ei(k+k0)z′

= Ei0e
ik0z +

k0(ϵr − 1)

2(k + k0)
Et0e

−ik0z

= Ei0e
ik0z +

k0(n+ 1)(n− 1)

2k0(n+ 1)
Et0e

−ik0z (46)

Finally substituting for Et0 from equation (43),

Et(z) = Ei0e
ik0z − n− 1

n+ 1
Ei0e

−ik0z (47)

The backward propagating part of the expression (e−ik0z) is the reflected field that

I expected to find.
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7 A word on the history

Initially, it was thought that the first layer of dipoles in Figure 4 cancels the

incident wave completely, making it “extinct”. Later, realizing that this could not

possibly be true, an extinction depth was defined. After the incident wave passes

through this depth, it becomes extinct and only the transmitted wave that we

observe remains inside the dielectric. However, we currently understand that we

should take all the dipoles into account because they act collectively to create the

transmitted wave. Introducing a transient step such as the extinction depth or

cancellation by the first layer of dipoles only raises more questions: What happens

to the transmitted wave as it travels towards infinity? Why doesn’t it change due

to the dipoles at further layers? After the incident wave becomes extinct, how can

the transmitted wave travel at a lower speed than c in free space without being

affected by the following layers of dipoles? The approach adopted in this paper

eliminates all those questions.
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8 Appendices

8.1 Appendix A

See Appendix C for the definitions of gradient, divergence, curl and convective

derivative.

A(r) = −iωµ0

4π
p
eikR

R
(48)

H =
1

µ0

∇×A (49)

= − iω

4π
∇×

(
p
eikR

R

)
= − iω

4π

[
eikR

R
∇× p+∇

(
eikR

R

)
× p

]
where I used ∇× (ϕA) = ϕ∇×A+∇ϕ×A. Notice that ∇× p = 0, since p is

a constant with respect to position.

∇
(
eikR

R

)
=

1

R
∇eikR + eikR∇ 1

R
(50)

= ik
eikR

R
R̂− eikR

R2
R̂

= eikR
(
ik

R
− 1

R2

)
R̂

Substituting (50) into (49),

H = − iω

4π
eikR

(
ik

R
− 1

R2

)
R̂× p (51)

=
ω

4π
eikR

(
k

R
+

i

R2

)
R̂× p

Now, I find the electric field.

E =
i

ωϵ0
∇×H (52)

=
i

4πϵ0
∇×

[(
keikR

R
+

ieikR

R2

)
R̂× p

]
=

i

4πϵ0

[(
keikR

R
+

ieikR

R2

)
∇×

(
R̂× p

)
+∇

(
keikR

R
+

ieikR

R2

)
×
(
R̂× p

)]
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Calculating the terms in (52) individually,

∇
(
keikR

R

)
= eikR

(
ik2

R
− k

R2

)
R̂ (53)

∇
(
ieikR

R2

)
= eikR

(
−k

R2
− 2i

R3

)
R̂ (54)

Also,

R̂× (R̂× p) = (R̂ · p)R̂− (R̂ · R̂)p (55)

= R̂(R̂ · p)− p

which I will need when we substitute (53) and (54) into (52). Moving onto the

next term in (52),

∇× (R̂× p) = R̂(∇ · p) + (p ·∇)R̂− p(∇ · R̂)− (R̂ ·∇)p (56)

On the right hand side of (56), the first and the last term are zero because, again,

p is a constant with respect to position. The third term is

p(∇ · R̂) = p

(
∇ · R

R

)
(57)

= p

(
1

R
∇ ·R+R ·∇ 1

R

)
= p

(
3

R
−R · R̂

R2

)
=

2

R
p

The second term is

(p ·∇)R̂ = pr
∂1

∂R
R̂+

pθ
R
θ̂ +

pϕ
R
ϕ̂ (58)

=
pθθ̂ + pϕϕ̂

R

Notice that pθθ̂ + pϕϕ̂ is nothing but p without its R̂ component, which I can

write as p− R̂(R̂ · p). So,

(p ·∇)R̂ =
p− R̂(R̂ · p)

R
(59)
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Equation (56) finally becomes

∇× (R̂× p) =
p− R̂(R̂ · p)

R
− 2

R
p (60)

=
−p− R̂(R̂ · p)

R

Putting (53), (54), (55) and (60) into (52), I get

E =
ieikR

4πϵ0

[
−
(

k

R2
+

i

R3

)(
R̂(R̂ · p) + p

)
+

(
ik2

R
− 2k

R2
− 2i

R3

)(
R̂(R̂ · p)− p

)]
=

eikR

4πϵ0

[(
3R̂(R̂ · p)− p

)( 1

R3
− ik

R2

)
−
(
R̂(R̂ · p)− p

) k2

R

]
(61)

8.2 Appendix B

I will evaluate the integrals with respect to dx′ and dy′ in equation (62).

Ed(z) =
ϵr − 1

4π

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

0

dz′

× Et(z
′)eik0R

[(
3(R̂ · x̂)2 − 1

)( 1

R3
− ik0

R2

)
−
(
3(R̂ · x̂)2 − 1

) k2
0

R

]
(62)

Consider Figure 8, which I will use to switch from cartesian to cylindrical coordi-

nates. Notice how I shifted the x and y (or simply ρ) coordinates to the location of

the observation point. I can easily do this because the problem is independent of x

and y coordinates: The media is homogeneous in x and y directions, the incident

plane wave is normal to the interface, and the integrals spans the entire x-y plane.

If any of them were not true, then I would need to take into account any effect on

the electric field that might occur due to a shift in the coordinates.

Next, I observe from Figure 8 that R̂·x̂ = −ρ cosϕ/R. Also, R2 = ρ2+(z−z′)2

and RdR = ρdρ. Now I can replace the integrals in equation (62) as

Ed(z) =
ϵr − 1

4π

∫ ∞

0

ρdρ

∫ 2π

0

dϕ

∫ ∞

0

dz′

× Et(z
′)eik0R

[(
3ρ2 cos2 ϕ

R2
− 1

)(
1

R3
− ik0

R2

)
−
(
ρ2 cos2 ϕ

R2
− 1

)
k2
0

R

]
(63)
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Figure 8: Coordinate switch from cartesian to cylindrical

Evaluating the integral with respect to ϕ,

Ed(z) =
ϵr − 1

4

∫ ∞

0

ρdρ

∫ ∞

0

dz′

× Et(z
′)eik0R

[(
3ρ2

R2
− 2

)(
1

R3
− ik0

R2

)
−
(
ρ2

R2
− 2

)
k2
0

R

]
(64)

Replacing ρ,

Ed(z) =
ϵr − 1

4

∫ ∞

|z−z′|
RdR

∫ ∞

0

dz′

× Et(z
′)eik0R

[(
1− 3(z − z′)2

R2

)(
1

R3
− ik0

R2

)
+

(
1 +

(z − z′)2

R2

)
k2
0

R

]
=
ϵr − 1

4

∫ ∞

|z−z′|
dR

∫ ∞

0

dz′

× Et(z
′)eik0R

[
1

R2
− ik0

R
− 3(z − z′)2

R4
+

3ik0(z − z′)2

R3
+ k2

0 +
k2
0(z − z′)2

R2

]
(65)

The limits of dρ integral is from 0 to infinity, but R = |z− z′| when ρ = 0. So, the

limits of dR integral is from |z − z′| to infinity. To evaluate dR integral, consider
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the following integral which represents all the terms in (65).

Fn =

∫ ∞

|z−z′|
dR

eik0R

Rn
, n = 1, 2, 3... (66)

I will calculate a few of the first terms and see if I can find all the terms I need to

calculate the integral in (65).

F0 =

∫ ∞

|z−z′|
dReik0R =

eik0R

ik0

∣∣∣∣∞
|z−z′|

= − 1

ik0
eik0|z−z′| (67)

The reason why I am able to set the upper limit to zero is given in the main text.

F1 =

∫ ∞

|z−z′|
dR

eik0R

R

=
eik0R

ik0R

∣∣∣∣∞
|z−z′|

+

∫ ∞

|z−z′|
dR

eik0R

ik0R2

=
1

ik0

(
−eik0|z−z′|

|z − z′|
+

∫ ∞

|z−z′|
dR

eik0R

ik0R2

)
=

1

ik0

(
F2 −

eik0|z−z′|

|z − z′|

)
(68)

F2 =

∫ ∞

|z−z′|
dR

eik0R

R2

=
eik0R

ik0R2

∣∣∣∣∞
|z−z′|

+

∫ ∞

|z−z′|
dR

2eik0R

ik0R3

=
1

ik0

(
2F3 −

eik0|z−z′|

|z − z′|2

)
(69)

F3 =

∫ ∞

|z−z′|
dR

eik0R

R3

=
eik0R

ik0R3

∣∣∣∣∞
|z−z′|

+

∫ ∞

|z−z′|
dR

3eik0R

ik0R4

=
1

ik0

(
3F4 −

eik0|z−z′|

|z − z′|3

)
(70)
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I don’t seem to be able get any closed form expressions except for F0 (By the way,

I used integration by parts). However, I see a recursion relation!

Fn =
1

ik0

(
nFn+1 −

eik0|z−z′|

|z − z′|n

)
(71)

All I can do now is use this relation in (65) and hope for the best. Specifically, ”the

best” means that all the terms I cannot explicitly calculate in (65) will hopefully

cancel each other out. Let’s find out:

Ed(z) =
ϵr − 1

4

∫ ∞

0

dz′Et(z
′)

×
[
F2 − ik0F1 − 3(z − z′)2F4 + 3ik0(z − z′)2F3 + k2

0F0 + k2
0(z − z′)2F2

]
Ed(z) =

ϵr − 1

4

∫ ∞

0

dz′Et(z
′)

×

[
F2 − F2 +

eik0|z−z′|

|z − z′|
− 3(z − z′)2F4 + 3ik0(z − z′)2

(
3F4 −

eik0|z−z′|

|z − z′|3

)

+ k2
0F0 − ik0(z − z′)2

(
2F3 −

eik0|z−z′|

|z − z′|2

)]

Ed(z) =
ϵr − 1

4

∫ ∞

0

dz′Et(z
′)

×

[
− 2

eik0|z−z′|

|z − z′|
− 6(z − z′)2F4

+ k2
0F0 + ik0e

ik0|z−z′| − (z − z′)2
(
6F4 −

2eik0|z−z′|

|z − z′|3

)]
and finally,

Ed(z) =
ik0(ϵr − 1)

2

∫ ∞

0

dz′Et(z
′)eik0|z−z′| (72)

8.3 Appendix C

Note f = f(r, θ, ϕ), A = Arr̂+Aθθ̂+Aϕϕ̂ and B = Brr̂+Bθθ̂+Bϕϕ̂ in spherical

coordinates.

Draw the coordinates and axes in a graph!!!

Gradient:

∇f =
∂f

∂r
r̂+

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂ϕ
ϕ̂ (73)

26



Divergence:

∇ ·A =
1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂(sin θAθ)

∂θ
+

1

r sin θ

∂Aϕ

∂ϕ
(74)

Curl:

∇×A =
1

r sin θ

[
∂(sin θAϕ)

∂θ
− ∂Aθ

∂ϕ

]
r̂ (75)

+
1

r

[
1

sin θ

∂Ar

∂ϕ
− ∂(rAϕ)

∂r

]
θ̂

+
1

r

[
∂(rAθ)

∂r
− ∂Ar

∂θ

]
ϕ̂

Convective derivative:

(A ·∇)B =

(
Ar

∂Br

∂r
+

Aθ

r

∂Br

∂θ
+

Aϕ

r sin θ

∂Br

∂ϕ
− AθBθ + AϕBϕ

r

)
r̂ (76)

+

(
Ar

∂Bθ

∂r
+

Aθ

r

∂Bθ

∂θ
+

Aϕ

r sin θ

∂Bθ

∂ϕ
+

AθBr

r
− AϕBϕ cot θ

r

)
θ̂

+

(
Ar

∂Bϕ

∂r
+

Aθ

r

∂Bϕ

∂θ
+

Aϕ

r sin θ

∂Bϕ

∂ϕ
+

AϕBr

r
+

AϕBθ cot θ

r

)
ϕ̂
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