Fractal:
The Mandelbrot Set's Image Generation through Accurate Computation - C++/GMP Implementation and Verification

There is a program named "backfract” on the web(lts link: Backiract. Its author also released a Go game front end named "cgoban”, which can be
found by Baidu search engine while backfract can't). It can render Mandelbrot set fractals. This program can display various areas of Mandelbrot set
in full screen automatically and the visual effect is very good(Here | list some of them:backiract examples). It runs on _unix/X. On its homepage it is
said that the program "randomly” selects "interesting” areas to display, but does not purely zoom in, sometimes it zooms in, sometimes it zooms out
next. There are also some videos on the web alleged to be able to zoom in by a factor of 10's power "N". Usually they finish playing back in several
minutes. | consider whether | myself can zoom it in infinitely, at least as most as possible.

In mathematics, there are two kinds of definitions for Mandelbrot set. In the book Chaos Fractals And The Applications and the book The Computer
Images of Fractals And Its Applications, roughly it speaks like this: The Mandelbrot set is related to another kind of set: Julia set. Notate the quadratic

mapping with point c as its parameter as f, = Z4+e , for any point ¢ on the complex plane there iIs a corresponding Julia set. Some ¢ points'
corresponding Julia sets are connected while others are not, by this, there is below definition for Mandelbrot set:

Mandelbrot set M is a set of parameters c that each makes the Julia set corresponding to the f. mapping of it a connected set, i.e.

M ={ceC | J(f.)is a connected set}

If we plot every c that is accompanied by a connected corresponding Julia set on the complex plane, then the set of C's is M set fractal. This definition
Is not good for computer processing, luckily, another equivalent definition of Mandelbrot set has been proved in mathematics:

M= {c eC | lm Z, » :x:}

in which,
Ly =0
Zn—l = Z,% +— C

This web page (The Mandelbrot Set) talked about handling of some problems met in the actual plotting:

(1) Judgement of infinity

In mathematics, it can be proved that the Mandelbrot set is fully enclosed inside the closed circle which takes the origin as its center and i1s of radius 2,
that is:

Mc{ceC| | <2}

So if one intermediate result of the iteration is of a modulus lager than 2, then it will definitely go to infinity if the iteration continues. So we use
modulus 2 as a threshold value.

(2) Times of iteration
The author of the above web page gave an example applying 50 times. But | ever met the case of different results between 50 times iteration and 200
or 1000 times iteration. So | haven't been clear about the mathematical basis of this question yet.

(3) Coloring

In fact the Mandelbrot set is only of the form of the middle (black) part. All the points outside of it do not belong to Mandelbrot set. It is not very visually
appealing by simply plotting a black and white image marking whether each point belongs to Mandelbrot set or not. The various colorful details we
have usually seen depend on coloring. One common method is to select the color according to the modulo arithmetic of iteration times of the
"escaped” point. (One other method is similar to contour line plotting, which is not used here.) But the effect of a rather simple coloring cannot
compare with that produced by a program like backfract.

(The pseudo-code that calculates whether the point of coordinate (4, 7) in the drawing window
belongs to the M set or not and then colors 1t):

Ty = left coord + delta® i;
1o = above coord - delta®* 7;

T =Xy : Horx=10
Y=o : Hory=10

mnth =0:

while( & << MAX ITERATION )
i

real = 2 —y? + Eg:

imag = 22y + Yo :

|g|2 = real®real + imag®imag ;

if( [2* > 4)

break;

else{ & = real; y = tmag; }

b4+
i
if{ k << MAX ITERATION)

SetPixel(hdc, i, 7 . colors[ k %250]) ;
else

SetPixel(hde. 7. § . RGB(0. 0. 0)) -

The floating point computation got the IEEE 754 standard, and books on computer architecture generally will talk about it. There are also books such
as Floating Point Computation Programming Principles Implementation And Application by Chun-Gen Liu {in Chinese) that illustrate it. And there is a
famous article on the web: What Every Computer Scientist Should Know About Floating-Point Arithmetic.

This article got three related programs:

The first one uses machine float, that is, the double data type in c/c++ and plots Mandelbrot set in VC++_ Besides, it lets the user select an area to
zoom in various parts by "rubber band";

The second one adds into the above code my class implementation for floating-point number, and compare the result to that of the above machine
float. But | haven't modified and finished the function of "rubber band" yet;

The third one doesn't take a GUI, it purely compare the computation result of my floating-point implementation with that of GMP fraction
implementation so to check their consistency.

The three programs were developed under WinXP + VC++6 on VIMWare3 at the very beginning. Later they are updated to Win7 + vs2015(MFC
installed) on YMWaret, with minor modifications. Both versions are provided here:

VC++6 version vs2015 version




(The code had not been cleaned up, (. )

The 1st program

(1)double type implementation
This code part of operation is nearly the same as the above pseudo-code:

my_mandel test 3(machine float)myv mandel testView.cpp:
for{i =8; 1 < w; i++)
{
for(j = 8; j < h; j++)
{
BOOL b_is_boundary = FALSE;
if{delta w » delta h)
{
if{ j == {(int){ (h*delta - (old above coordinate- Y
old_below_coordinate))/(2*delta) )
|l § == ( h-(int){ (h*delta - (old above coordinate- Y
old_below_coordinate))/(2*delta) ) )
)
b is boundary = TRUE;
¥
else
{
if( 1 == (int)({ (w*delta - (old right coordinate- N
old left coordinate))/(2*delta) )
|| 1 == ( w-(int)({ (w*delta - (old right coordinate- Y
old left_coordinate))/(2*delta) ) )
)
b is boundary = TRUE;
}
double %8 = left coordinate + delta * (double)i;
double y8 = above_coordinate - delta * (double)}j;
double % = %x0;
double ¥y = y@8;
int k = @;
#define MAX ITERATION 1e88
while(k < MAX_ITERATION)
{
double real part = X*¥u-yFy+x8;
double imaginary part = 2¥*x*y+y8;
double z_abs square = real part*real part + imaginary part*imaginary part;
if(z_abs square > 4.8)
{
break;
}
else
{
X = real_part;
v = imaginary part;
h
k++;
¥
if(k < MAX_ITERATION)
{
{/unsigned long colors[16] =
unsigned long colors[5@] =
{
RGB(8xDE , @xB8 , ©x87),
RGB(Bx12 , @x19 , ex7a )
5 _
{/5etPixel{hdc, i, j , colors[k¥15]);
SetPixel(hdc, i, j , colors[k%58]);
if(b_is boundary)
SetPixel(hdc, i, j , RGB(255, 255, 255));
¥
else
{
SetPixel(hdc, i, j , RGB(&@, &, 8));
if(b_is boundary)
setPixel(hdc, i, j , RGB(255, 255, 255));
¥
¥
}

Its running result is like below:(To save the space, below pictures displayed are those zoomed out by the browser. To browse them in their oniginal
size, click this link. Or you can right click below pictures and save them to your local storage for watching.)
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| i = AP & B [2% - e = AP & B '
The proportion of the area selected to zoom in by the user is very likely not the same as that of the drawing window. 5o | make some extension to it to
adapt to the drawing window so to make every pixel point inside the drawing window being plotted. The inner part within the two white lines in each of
the above images is the area selected by the user(the visual effect maybe is poor for small pictures, you can turn to the original ones), which may
appear too flat or too high for the drawing window. The judgement processing of "b_is_boundary” in the above code is for this reason.

(Two intermediate text files draw_coordinates txt and arguments txt are generated after you run the program. You need to delete them manually
before the next run.)

The machine double float is of a binary precision of 53 bits, roughly 16 decimal places of accuracy. The starting horizontal and vertical coordinates are
both of a magnitude of about (-2 2). If each time the dimension of the selected area for zooming in is about one tenth of that of the original image, we
may find that after about 16 times of selection the image went "mosaic”. Bare 16 times, this is far less than infinitely zooming it in. Besides, we will see
behind that after about 40 times of iteration, the log already shows that the accumulation of error from machine float operation leads to obvious fault.

The 2nd program

(2) my floating-point class implementation
Since the calculation is only concerned with addition and multiplication operation, we should be able to do completely accurate calculation for the
terminating decimals. The arithmetic taught in primary school should suffice. In order that we only need to compute terminating decimals, we only use
starting coordinates and step values with finite fraction part. The latter is achieved by specifying the width and height of the drawing window as some
particular values such as 500/512/600/1000/1024 so that the gap value between two pixel points is also a simple terminating decimal.

That's why | modified the code in View cpp to support only these particular values.

my_mandel test my floats vs2013'mv_mandel test my floats vs2015View cpp:

if (!(w ==12080 || w==1258 || w==400 || w==7588
|| w==28008 || w==1008 /*|| w == 1824*/)
|| '(h ==28@ || h == 258 || h == 48@ || h == 582
|| h==8@@ || h == 1eee /*|| h == 1824%/)
)
{
AfxMessageBox(L"width and height not supported");
return;
}

char* one w strI = (w == 288) ? "@.885" . (
W == 250 ? "@.884" : (
W == 488 ? "8.8825" . (
w == 588 ? "@.882" : (
w == 888 ? "9.88125" . (
w == 1888 2 "8.881" : ("error characters")
)

)
)5

char* one h strI = (h == 288) ? "8.885" @ (

The reader maybe still needs to modify the code in View.h, setting the width and height of the program window that suit your display area and meet
the above specification.

my_ mandel test my floats vs2013\my mandel test my floats vs2015View h:

#define DEFAULT _CLIENT_AREA WIDTH tee//1eee
#define DEFAULT CLIENT AREA HEIGHT 258// 368

The starting coordinates are: x. -25t025 vy -20t020:

my_ mandel test my floats vs2013'\my mandel test my floats vs2015View h:

fI {I left coord("-2.25");
fI I right coord("2.25");
fI {I above coord("2.8");
fI I below coord("-2.8");

Three new files(my_floats.h, my_floatl.cpp and my_floatll_cpp) that implement my floating-point class and several helper functions were added.
(Sometimes it reported error when | built the project under VC6 but passed after | re-added those files to the project. And it could never pass building
under vs2015, reporting re-definitions found in nafxcwd_lib/uafxcwd.lib and libcmid.lib. To solve this issue, one maybe need to adjust the project. First,
ignore these two libraries in the "input” entry of the "link" option of the project; then, add these two libraries as per the above order to the "Other library
dependencies”.) Two different kinds of data structure for floating-point were implemented successively. Because it occured to me that the latter new
one maybe would be better than the former one that had been implemented, | did them one after another.

The first implementation:

my _ floats h:

class float number{

public:
bool minus;
char®* number; //in absolute value form
int point_pos;

b

The second implementation:

my_floats h:

class floatII{

public:
bool minus; f/with "-" sign?
char* digits, ffno "." inside

int point pos r; //counting from the right side

b

Sometimes abridged as:

ruijnandeLjesL}ny_ﬂaam_yslD15hn};;nandeLjestjny_ﬂcam;FSEGlSlﬁen;cpp:




typedef float number fI;
typedef floatII fII1;

Both classes use seperated member "minus” to represent whether the floating-point number is positive or negative, so the digits string of the number
(member "number” or "digits") all goes without symbol of sign. The first difference between the two classes is that the decimal point was reserved in
the digits string in the previous class implemented, but it vanishes in the latter class. The second difference is the mark of the place of the decimal
point, in the previous class it is counted from left to right(point_pos), in the latter class, however, is counted from right to left{point_pos_r). Thus the
implementation code of the latter class is more concise. The computation results of these two implementations can be compared to each other to
verify the code. This is a second way for verification. But the cores of the algorithm of these two classes are the same, so probably its function for
verification is limited. A complete verification relies on the third program below which implements the contrast of the computation results herein to that
of the GMP calculation. That is a third way for verification, also can be said as the real verification. (A first way for verification is a rather local one, it
only verifies addition, i.e. do a reverse operation back after an addition finishes and see if the result can be restored correctly. This way is little used.)

Floating-point classes being accomplished, take fl class implementation as an example, the code is changed to roughly like this:(The actual code will
interleave a little because of the need for result comparison. The example here is of an early version of code )
my_mandel test my floats 0'my_ mandel testView cpp:

fI I left coord ("-2.25");
fI I right coord({ "2.25");
fI fI_above coord{ "2.8" };
fI fI _below coord("-2.8" };

fI delta wI, delta hI, deltal;
#if 1

fI w_factorI{one w strI);

fI h_factorI{cone h _strI);

delta wI = (fI_right coord - fI_left coord ) * w_factorI;
delta hI (fI_above coord - fI below coord) * h_factorI;

if(delta wI > delta hI)
deltal = delta wI;
else
deltal = delta hI;
#endif

#if 1

fI x@I(fI left coord );
fI y8I(fI_above_coord);

fI aI("2");
fI threshold("4.8");
#endif

#if 1
for{i = 8; 1 < w; i++)
{
y8I = fI_above_coord;
for{j = 8; j < h; j++)

fI xI("@");
I yI("e");

int k = 8;
ine MAX ITERATION 1@//28//10@
while(k < MAX_ITERATION)

1
fI real part = XI*xI-yI*yI+x81;
I imaginary part = al*xI*yI +yBI;
fI z_abs square = real part*real part + imaginary part*imaginary part;
if(z_abs square > threshold)
break;
¥
else
{
xI = real part;
yI = imaginary_ part;
h
k++;
¥
if(k < MAX_ITERATION)
{
SetPixel(hdc, i, j , colors[kk58]);
¥
else
{
SetPixel(hdc, i, j , RGB(@, @, 8));
¥
y8I = y8I - deltal,
}
¥8I = %8I + deltal;
}
#endif

The fll class code is similar, basically it just changes "I" to "II" or appends a suffix "[I".

The illustrations showing the running result:(Now one can see the program is drawing the pixels of the screen one by one. Below are two images, an
early one on the left and a late one on the right.)

..i& Untitled - my_mandel_test_my_floats_vs2015 E@ .ﬁ Untitled - my_mandel_test_my_floats_vs2015 E@
File Edit View Help File Edit View Help
0@ || EX; 0| EEX;
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Below we give a graphic illustration for the log file:
(The blue wireframes orderly marked the coordinates in the window, the coordinates in the complex plane(the strings are in two kinds of form: fl form

and fll form), iteration order, total iteration times when the computation loop ends.)
(The red wireframes orderly marked the real part, the imaginary part and the square of the modulus of z computed using machine floating-point.)

(The green wireframes orderly marked the real part, the imaginary part and (the high-precision approximation value of) the square of the modulus of z
computed using my class code(fl and fll, which have the same result values).)

Er Mj log.txt - iI0S4 l — | = Lih]i
R HBEEE) BE(0) EEN) EEH)
To calc delta... -

Ended calc delta

i 0000

EKDI vOL) isgl-2.25, 2.0

(x0II yDII) i 5,

[machine fluatmg = 0) Jreal : —2. 25000000000000000000000000000000,

imag : 2. 00000000000000000000000000000000, 22+ 9. D6E5DDUUDDDDDDDDDDDDDDDDDDDDDDDD
my floatl (==IT)| approx: |real I_approx(len:d): -2, 25)

my floatl (==I1) approx: lmaginary |_approxilen:s): 2. 0]

z2_I(len:f): 9.0625
zZ2 II(len:5, point pos r:d): 90825

I. THEEE NUMBERS LENGTHS ARE:d4, 3, 6
II. THFEE NUMBERS LENGTHS ARE:3, 2,5

Tterate 0 rounds.
(1, JAL0 1]
(x0I v0I) is (-2.25, 1.9340)
(x0II w0II) is (-225, 19340)
[machine floatik = 0)]real :-2. 25000000000000000000000000000000,
imag:l. 983999999999999985759145284 79800, 221 8. 99875A0000000001991 T9339688271 28
my floatl(==II) approx: real I approxilen:d): -2. 25,
my floatI(==II) approx: imaginarv I approxilen:f): 1.9340,
z2 T(len:10): 8 99875600
z7 II1{len:9, point pos_r:8): B99375600

I. THEEE NUMBERS LENGTHS ARE:d4, 6, 10

4,6,1
II. THREE MUMBERS LENGTHS ARE:S, 5, 9

Iterate 0 rounds.

(i, 3360 2)
(x0T w0OI) is (-2.25, 1.9680) il

It can be seen that the point that lies at (0 0) exits the loop in just one time of iteration, which is outside of M set. It then goes to compute the next point

(0 1).
Below we give one more example, the pixel point (16 125):
rmjlcg.b{t-ﬂgiﬁ [':'|El|ﬁ]1
MR &EE(E) BI(0) EFJ(N) EEi(H)
(i, j) (16 125) A
x0T ¥ 1=

| =0
imag ;0. QOOOO00DO00NA00NAN0NA000A000A000, =2 3, 9TE0360000000001 2570922081 067692
my floatl (==I1)| approx: real_I_approx(len:6)J: —1. 9340,
my floatl(==I1) approx: imaginary_I_approxilen:1): 0,
22 I (len:10): 3. 97603600
z2 IT0len:9, polnt pos_r:8): 39TE03R00

I. THEEE NUMBERS LENGTHS ARE:6, 1,10
1

1
I1. THFEE NUMEERS LENGTHS ARE:5, 1,9

[machine float(k = 1)]real:1.98203600000000013103829132887768,
Srman (1 AAAANAAAROANOOANAANAANAANAANAANN -7 % G72ARETARTAENNAENET 421 22EARAAT20

(the middle part._.is omitted)

ol- AeTel- 3 Y g PuTatelstate dol i Sulelod RUESSEAUTSY Ruolalel tololoulalol Y il el el g otoley puletel K- YAV el toTodulatelaloletorll RagslslsToduivl Walslo Tl QUL - & Todulol)

I. THREE WUMBERS LEMGTH- ARE:114,1, 246
II. THEEE NUMBERS LENGTHS ARE:115,1, 225

[machine float[(k = @) Jreal:1. 22T042889466662 73396601 30950886,
imag ;0. 00000000000000000000000000000000,(z2:1. 505634252590690 72001999151 689233

oatl(==[I) approx: real_I_appruﬂ(len:lSD):
I, T 0dEEy9de6d492L 39541 TR105T1V169TLEEE1 6945600961171 E2T40TVE0499T 04801 24742635880 558944806425685 50207 2468
20426541 T9386268409455610,
v fl?atl(——l%} approx: [imaginary_l_approxilen:ltT T, |

len: 258
1. 5056342525901T2801456151943855238152299?2??3206465?80300?48914?936942615?056?228224318224?0 026154537
dHaTEE998253451 3460261 185531140634621 8691 483904855550011 5945981 TT2E883 7841 5099600297 7487308503978
z_Iltlen:d5T, point_pos_riZhbBl: e
15056342525901T2801456151943855238152299'?2??3206465'?80300?48914?936942615?056?228224318224?615453?4

8975899825401 6546626118055114068464165691459645555000115945981 77285857 54150996505297 745873085065

I. THREE WUMBERS LEMGTH- ARE:130,1, 253
II. THEEE NUMBERS LENGTHS ARE:129,1, 257

Iterate 10 rounds.

(1, 33 (16 126)

(The contents marked by the purple wireframes at the end of the digit strings are different. This is not because the computation results are different. It
Is because that | only print up to 200 digits at most while the length of the string of the result value is larger than 200. The string in fl form got one
more character, i.e. the decimal point " than that string in fll form, so its output got one less digit than the latter )

It can be seen that the point lies at (16 125) 1s on the real axis and belongs to M set. So the iteration reached the maximum(here it is 10 times) and
the value still didn't exceed the threshold. The code did no more calculation and went to next point (16 126).

It brings dense computation to conduct accurate calculation using my floating-point classes. In my code, the calculation code was simply placed inside
the OnDraw() function, this resulted in that the program didn't respond to external messages. This no responding maybe doesn't matter much under
Win XP yet, one can still see the program is still drawing on the screen one pixel by one pixel. But it becomes worse under Win 7: the program draws

no more than a few pixels and then just displays "The program does not respond”.

To avoid blockmg message loop because of dense computaﬂon{Blnckmg message loop is nc}t blocking pmcess ClnDraw{} IS located in the main
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implemented by MFC itself)), | need to either start another worker thread to compute or insert message handler loop code by myself into the dense
computation. Here the latter method is used. But it met a problem when closing the window, the process doesn't exit and the OnDraw() is still running,
so | can only add some handling in the OnDestroy() function in View class.

Being able to conduct accurate calculation using my floating-foint classes, it may be found that how the error from machine floating-point (i.e. double
type) computation which is intninsically approximate could accumulate. Below is the log example. (log files for download(Below extracted part is at the
very end of the log file.))

(Since the iteration times is large, here it is the approximation in scme certain precision of the calculated reult using my floating-point class that is
compared to the calculated result using machine floating-point, of course, this precision is highly better than that of double type.)

Here it is the iteration of the point of coordinate (16, 125) that is logged:

(The value inside the red rectangle 1s machine floating-point result. The value inside the green rectangle 1s my floating-point result. )

(P.S. In the path showed in below image, the name of the directory that log.txt lies in is in Chinese, which means "logs comparison
that shows machine floating-point got obvious error after more than 40 times of iteration"; see the sub-directory name of the above log

file for download.)

When k = 0, the resultz are the same;

e =2 1 e
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2017/2/13 14:02:42 2187697 =77 Hi=—11 ~ ANSI = PC
s (i,3)(16 125)

(xeI yel) is (-1.9948, @)

(x8II y@II) is (-1994@8, @)

[machine float{k = @)]real:-1.99%4a682082080
= my floatI(==I1) approx:|real I approx(len:
L my TloatI({==II) approx: imaginary_I_approx

z2_I({len:18): 3.97683688

z2 II{len:9, point_pos_r:8): 397683688

imag:@.eeeaae80E

o5

—

— = &

o i

=0 L s,

B [X=}
8

I.THREE MUMBERS LENGTHS ARE:6,1,18
IT.THREE NUMBERS LENGTHS ARE:5,1,9

[machine floatqk = 1)]real:1.982836000000000010000000000000080, imag:e.a0000B880E
A my floatI(==II)} approx: real I approx(len:18): 1.98283608,
L my floatI({==II) approx: imaginary_ I approx(len:1l): @,

z2_I({len:18): 3.9254667852962888

z2_II{len:17, point_pos_r:16): 39234667852960088

I.THREE MUMBERS LENGTH> ARE:1@,1,18
ITI.THREE NUMBERS LENGTHS ARE:9,1,17

[machine fleat(k = 2!]Feal:1.934455?ESEBEEEEEBEEEEEEEEEEEEEEEJ imag:ﬁ.@ﬂﬂﬂﬁﬁﬂﬂ@ﬁ—q
A my floatI(==II) approx: real I approx(len:18): 1.9344667852960888,

L my floatI(==II) approx: imaginary I approx(len:18): @.2028082000000000, =

z2_I({len:34): 3.74215143389876131444765160E020068 3

M z2 II(len:33, point_pos r:32): 374216143389876131444761600000000 o

i I.THREE WUMBERS LENGTHS ARE:18,18,34 - ¥
23834 1 4 | 4

When k = 40, the difference 1sn't large;

I e [ ||

2
e EE
O\ client_ftp\blog_fractal\logtt?d Bt smE s niEA0E RGBS =S log.bt - =

2017/2/13 14:02:42 2,187,697 =11 EE=—H ~ ANSI ~ PC

[machine float{k = 48) ]feal:—2.53932?2?52?34285%&8% imag: 8. B002000¢
A my floatI(==II) approx:|real I approx(len:626): -1.53862838413785507831F2435884:
| my floatI(==II) approx: imaginary I approx(len:1): @,

z2 I(len:125@): 2.3428230@54279230408501909660585972851580113891691132246687226]

z2 IT({len:1248, point_pos r:1248): 2342323805427928540591989659555972851500113¢

I.THREE MWUMBERS LENGTHS ARE:626,1,1258
II.THREE NUMBERS LENGTHS ARE:525,689,1249

[machine float{k = 41)]real:8.347968156044579557000000000000000, imag:0.00000000¢
A my floatI(==II) approx: real I approx(len:642): &.34832384542792539485919896695¢
| my floatI(==II1) approx: imaginary I approx(len:1): @,

z2 I(len:1282): 8.12167748911577204315085959974631864671310852384557054138772024

z2 IT(len:1281, point_pos r:1288): ©1216774891157725431505959974631864671318385:

I.THREE MWUMBERS LENGTHS ARE:642,1,1282
II.THREE NUMBERS LENGTHS ARE:641,1,1281

[machine float{k = 42)]real:-1.872964407977152000000000000000008, imag:d.o000000¢

A my TloatI(==II) approx: real I approx(len:658): -1.8723225188342278565494840025:
| my floatI(==II) approx: imaginary I approx(len:1): @, L
z2 I(len:1314): 3.5@5591584?53815545?52235@?51321@53@@28315148?58331??5915EIEBJ—J
z2 IT{len:1313, point_pos r:1312): 3585501584763816545762235687613218530862831614 7
Y

= I.THREE NUMBERS LENGTHS ARE:658,1,1314
B II.THREE WUMBERS LENGTHS ARE:657,641,1313
r 3
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When k=47, there 15 difference at the first decimal place;
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2017/2/13 14:02:42 2,187,697 =13 He=E—H] ~ ANSI v PC

F
[machine float{k 46) Jreal:1.63535399957262708000000000000000, imag:d.00000000¢
a3 my floatI(==II) approx: real I approx(len:722): 1.65178899296666312452498142409:
| my floatI(==II1) approx: imaginary I approx(len:1)j: @,
72 I(len:1442): 2.7281161701670609483406360076285512863135819940358334832182596°7
z2 II(len:1441, point_pos r:1448): 272811617816786004383406360076288512863135819¢

I.THREE MUMBERS LENGTHS ARE:722,1,1442
II.THREE NUMBERS LEMGTHS ARE:721,1,1441

[machine float{k y]feal: E 589382?3391522SEEE@E@E@E&E@E@E@E imag:@.2EE00000E
a my floatI(==II) approx [Feal I approx(ien:738): @.73411617016/0600455406p60076:
| my floatI(==II) approx: imaginary I approx(len:1)j: @,

72 I(len:1474): 8.5389265513008753187145914574892645025517617420028947909895324¢
z2 II(len:1473, point_pos r:1472): @8538926551386753187145914574092645925517617+4

I.THREE MUMBERS LENGTHS ARE:738,1,1474
II.THREE NUMBERS LEMNGTHS ARE:737,721,1473

[machine float{k 48)Jreal:-1.53187937621164240000000000000000, imag:d.o000000¢
a3 my floatI(==II) approx: real I approx(len:754): -1.4558734486992468125548554259¢
| my floatI(==II1) approx: imaginary I approx(len:1)j: @,
2 I{len:1S@6): 2. 11?238?411&9519545454155?@84@9?2&81@54@@?94?4431889?322?2928ﬂ !
z2 II(len:1585, point_pos r:1584): 211723874118951964645415570540807208106540879: 7
%
L I.THREE NUMBERS LENGTHS ARE:754,1,1586 o

L4 II.THREE NUMBERS LENGTHS ARE:753,1,1585
¥
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When k=52, already we cannot think they are close ;

. (2 [ et

FhrkpAnlH. .
2 @
| 3ER Ef
Diuelient_ftp\blog_fractal\loght3t Bt st R omERAE R EHEET RS logt ~ =~

2017/2/13 14:02:42 2187697 =17 EHE—41 + ANSI + PC

I.THREE NUMBERS LENGTHS ARE:77@,1,1538
IT.THREE NUMBERS LEMGTHS ARE:769,1,1537

[machine float{k_ = 58)]real:-1.871357118975600000000080000008008, imag: . poRaBRGE
@ my TloatI(==II) approx: real I approx(len:786): -1.9783122126397487923884549195¢
l  my fleatI{==II) approx: imaginary I approx(len:1): @,
z2 I(len:1578): 3.915697773098067950313133396666563590081649372536054721851404;
z2 II{len:1569, point_pos_ril568): 3915697773898867958313133896666563598881649:

I.THREE MUMBERS LENGTHS ARE:786,1,1578@
II.THREE NUMBERS LEMNGTHS ARE:785,769,1569

[machine float{k_ = 51)]real:1.587977466751858620000000000000800, imag:@.00R0880E
A my floatI(==II) approx: real I approx(len:B882): 1.9216977738908679503131338966¢
L my TloatI({==II) approx: imaginary I approx(len:1l): @,
z2 I{len:16@2): 3.592922331899326238878968359423503985640172244186942549814585:
z2 II{len:16@1, point_pos_ril6@@): 3692922331899326235878968359423583985648172:

I.THREE MUMBERS LENGTHS ARE:882,1,1682
II.THREE NUMBERS LEMGTHS ARE:881,1,1681

[machine float(k = 52)]real:8.27999684823143587 imag:ﬂ.@-@-@-@ﬂ-@ﬂ-@fl—l
@ my floatI(==II) approx:|real I approx(len:B818): 1.698922331899326258887896P3594: ™
L my TloatI({==II) approx: imaginary I approx(len:1l): @, £

— z2 _I{len:1634): 2.88533?ES?lE?BE8858?552354@328@298?5592321@51583293334@413189EG

4 z2 II(len:1633, point_pos r:1632): 2886337887187I685587552354@3250295765923210¢
¥

1
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Since k = 33, the results might have got different plus or minus signs!

. (2 (O et

=] =2
® O
=2 EE
Dielient_fip\blog_fractal\loghbdd ErfllsfE SoERAIE R EHEET A mE log.d ~ =
2017/2/13 14:02:42 2,187,697 =11 EHpe—10 = ANSI - PC
[machine float{k = 53}jreal:—1.915EEE21?454?15@@@@@@@@@@@@@@@9@, imag: 8. 002000¢
&3 my floatI(==II) approx:[real I Bpproxilen:Bsa): O.o00a57087107 2E

| my floatI(==II) approx: imaginary I approx(len:1): @,
z2 I(len:1666): B.796265477028334802828379685985732063144202302703375040245228¢4
z2 IT({len:1665, point_pos r:l664): 8706265477025334802828379685955732063144292¢

I.THREE WUMBERS LENGTHS ARE:834,1,1666
II.THREE NUMBERS LENGTHS ARE:833,1,1665

[machine float{k = 54)]real:1.67553185551742500000000000000000, imag:o.00000000¢
A my floatI(==II) approx: real I approx(len:858): -1.1977345229716651971716283144]
[ my floatI( II} approx: 1maglnar‘y I approx(len:1): @,




ZL_dpienclioda )y L.48258200 Y0/ 2lolbs Jo22dzhiohe f L5000 g Lo a8w Mool Lalows LS sesia L s o
z2 _II{len:1697, point_pos _r:1696): 14345679875151623859009086872937301995548798¢

I.THREE MUMBERS LENGTHS ARE:85@,1,1698
IT.THREE NUMBERS LENGTHS ARE:849,833,1697

[machine float(k = 55)]real:®.81340699855366541000600000000008, imag:e.oBBE2BBEE
A my floatI(==II) approx: real I approx(len:866): -8.5594328124518376148998939278¢

+
L my TloatI(==II) approx: imaginary_ I approx(len:1}): @,
z2_I(len:173@): B.312964176589478916857635585234504014497473081644148258552449393¢
z2 II{1len:1729, point_pos_r:1728): 8312964176589478916857638852348040144974788] ~
Y
I.THREE MUMBERS LENGTHS ARE:866,1,1738

IT.THREE NUMBERS LENGTHS ARE:865,1,1729

@
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(It seems that "backfract" uses "long double” type instead of "double”. Still this is too little )

The function to select a region to zoom in is not implemented in this version of code. Besides, the zooming-in of M set is endless, | need to consider
how to zoom it in on earth. Manual selection? Or automatic selection? How should | present the image patterns of the M set?

The 3rd program

(3) GMP implementation

GMP library is the GNU "big number” library. The GMP library | used was built under MinGW on WinxXP on VYMWare3, it can then be directly linked
into the applications developed under VC++6, along with some more libraries of MinGW and Windows. When | upgrade/update my program on Win
f+vs2015 on VMWaret, the library itself is still usable, only that the fprintf() function cannot be used for the reason of libmsvcrt.a of MinGW. So |
replaced all the "fprintf"s with "fwrite"s. For running, some VC libraries from V5 and some libraries from MS SDK that are prompted to be in need are
added.

GNU big number libraries are composed of GMP, MPFR, MPC. GMP is big integer and fracticn number library_ It also included function part for
floating-point operation but that now is replaced by MPFR(said in GMP manual). MPFR is arbitrary precision big floating-point number library, it is
based on GMP. MPC is big complex number library and it is based on the former two libraries. (It is interesting that GCC building is dependent on
these libraries.) Besides, There is another library MPIR branching from GMP_ It is said that one of MPIR's goals is to become a big number library that
can be built with VS under Windows because GMP cannot. Here MPIR is not used. | ever thought | would need MPFR to realize the function needed,
thus "mpfr" is used in the file name ("mandel_with_mpfr_test") but later | found that mere the fraction part of GMP library could suffice. And the latter
calculates in absolute precision, not limited to the arbitrary precision of the former. Yet the file names are not modified. Actually nearly my whole
program has nothing to do with MPFR except only at one place | use it to print a log record.

MPC

MPFR

GMP =  MPIR

| installed a MinGW+MSY S offline-install package downloaded from the web on WinxP on VMWare. As the manual and "configure” help guided, |
configured and compiled GMP and MPFR(The source package of MPFR got a file(INSTALL) talking about three ways for building it under Windows
(MinGW, Cygwin and vs2015)). There is nothing peculiar. But the library to be built can only be specified either as static or as shared/dynamic each
time. | just built static ones. The two static libraries(libgmp.a and libmpfr.a) obtained can directly be used by VC++6 and vs2015:

mandel with mpfr test vs2013'\mpfr_inc h:

L
@

L = N 141U LA

(1ib, "1ik

[w¥]

comment({lib, "libgcc.a

(1ib, "1ik

W

comment(lib, "libmi

LS
W

LS
o
g g o9 o9 o9 09

L w
I

+ o=

(1lib, "1lib

[w¥]

All other lib*.a files are MinGW libraries that are needed when building the program. Besides, to run the program one need libgcc_s_dw2-1.dll of
MinGW and some dlis of Windows.

GMP is implemented in c. It got a C++ wrapper library that could be configured and built. But the manual said that this c++ library generally can only
be used by the application built with the same (c++) compiler. In development | found that | must use ¢ compiler instead of c++ compiler to compile
one source file that includes gmp.h, so my mpfr_lib.c has to be c file instead of cpp file.

Link order is required for MPFR library, first libmpfr.a, then libgmp.a. And the manual says that in some cases one must specify /MD option for the
Windows cl compiler to build VYC++ application using GMP library.

(There is an open source project on fractals named "FractalNow". It got MPFR computation joined into its code since version 8.0. This project is
dependent on Qt. | built this project under both Ubuntu and WinXxP MinGW. It got a debian package in the Ubuntu repository and was rather easy for
building. On Windows, however, the Qt4 .8 it depends on requires GCC4 4 for building. | could only search for and download one MinGW package
with GCC4 .4, then copy the earlier MSY S directory, moreover, download the "pthreads-w32" package, thus accomplished its building.)

Running effect:
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As to the log file, it got some more contents, mainly the GMP calculating results and the MPFR print-out.

The first image below is the case for the point of coordinate (22 0). (If you don't modify the program source downloaded, most probably you'll get the
log with a start like it here. This is because | skipped the points ahead and started from column 22 when debugging. The code hasn't been cleaned
up, so this is not removed.)

The meaning of the blue, green and red marking wireframes is the same as before. The ocherous wireframes marked the results calculated using
GMP while printed out using MPFR. What's more, thickened wireframes in corresponding color are newly added. What they marked are absolutely
accurate values and not high-precision approximate values. Orderly, the exact value of the real part, the approximate value of the real part, the exact
value of the imaginary part, the approximate value of the imaginary part, the exact value of the square of z's modulus, the approximate value of the
square of z's modulus calculated using my floating-point implementation are verified against GMF implementation.

| logltxt - IS+ |F:’PELh-£3-J

(R HRE(E) BIL0) EF(NV) #EH)

(i, 3) i
(x0I viI) is —1.8980, 2.0])
(x0IT v0OII) i 920

[machine floatl(k = 0) real :—1. 39800000000000013145040611561853, |

[imag : 2. 00000000000000000000000000000000, £2:7. 60240399999999993951 8R023321 0027 |

my floatl(11) : feal I(len:6): —L.3980,]
flnatI(::IIJ approx: real | approxtlen:6): —1. 8980,

NPFE wvalue offreal:- 1 exp:l, [FRACTION: —949 / 500]

m— check againt real partll...
EPFR value |of |real _approx:-189799999999999999999999999999998, exp:l, [FRACTION: -949 / &500]

g check againt real partll approz...
mv flnatI(IIj Tmazinary 1 Llen: ) . E.ﬁ, |
my floatI(==I1) approx:|imaginary | approxilen:3): 2.0,
NFFE value of |imag:Z200000000000000000000000000000000] exp:1, [FRACTION: 2 / 1]
———— +tn check agalnt 1maginarvy partIl...
|MPFR value| of [imag_approx: Z00000000000000000000000000000000,| exp:l, [FRACTION: 2 / 1]
—— tfo check againt 1ma:1nary_partll_apprnx...

_Approx
zZ II(len 4, pnlnt_pns r:8): Te0240400
zE_II_apper(len 9, point_pos r:2): TROZ40400

(i I.THEEE WUMBEEES LENGTHS ARE:6, 3, 10

I. THREE NUMBERS LENGTHS (approx) ARE:6,3, 10
II. THFEE NUMBERS LENGTHS ARE:5, Z, 9
'|1I. THREE NMUMBERS LENGTHS (approx) ARE:G, 2,9

NFFE wvalue DleHE:"r'6024D399999999999999999999999994,' exp:l, [FRACTION: 1900601 / 250000]
—— 1o check againt z abs squarell...

] B : , -1, [FRACTION: 1900601 / 250000]

———— to check againt z_abs squarell approx...

Iterate 0 rounds.

(1, 30022 1)
(x0T vOI) is (-1.8980, 1.9840)

It finished wihile looping only once in the above illustration and got a short log. Let's further observe the k=9 time of iteration of the point of coordinate
(22 125). Now the log is very long and can't be all displayed in just one image. And here | can only replace many middle lines of digits with one "*"
line. In the first illustration below it accomplished the comparison between the exact value of the real part and the approximate value of the real part:

[ 2 togLixt - iz e o= e |
P SEE BERO) SEV) EEH)

machine floatik = 9)[lreal :1. 423998863627 02099029T1 7021 0396ET -
000000000000000000,|z2 12, DATTTATE36110611T9744565p1 247537

imagz:l. UDDUUUDDDUDDD
] len: 20507

l l0000000000000000000000000000000000000000000000000000000
my floatI(==II) approx:[real I approxilen:1042):
E. d2R998RE302T063450261 1699240536546 7263056271 260T0E51 24851 203144961 704596354966 2339639991 01 6628 T14TER2 2368

o e e o o o e T e o e e e ey
NTEYTIREEOA48] ARZAZRI0TEAT 9RNE3E08ERA0T 1 ANRAA4N93RE0869392684 08495 T TOT 2991 AR 390453794 32859006522
MFFE walue |of
Teal : 142599886062 T Ub3dbUZE [ [6992dUs0EaE T Z6oUR62T [ 260 560 2dasl 2Us1 495 TUdLUEs5496b 23590999 UILEERT 14160
B o T o o e o e o e T o e S ST T
491 64439300851615981 21651 2196 T4dR01 51 TR2Z0R301 2219851 TRT1IEETOLIA09091 471 TRALI999999999999999999999999999999499
fL R o R e O o o R R R o o R o o o R R S o o e o S o o S o S o o o o o o o
997, exp:l, [FRACTION:
10BZ0BEETZRTT2R30E99941 0BA0R0TA1 429031181 406EARR41 BZNZ4ER1191TZ21 194 3TRZRARRE1 BZ1 9RRTRENATA1 hd1 BR3141 3409
B o o e o o o e o ot T o o e o e o = e e
158346583123481601 /
TAdRE340T31 200206 T4329096031 bdB 293383 T3TRdT1 34800406894 2T1 01 3332062 TE3800TO11 83049361 TA8a04004 2T E03361 51
B o o e o o o e o ot T o o e o e o = e e
Q0000000000000000]

———— to check againt real partIIl...
NPFE wvalue of
real approx:ldZ399886362T063400261169924036846T2R308R2T1260THAR] 24831 20314951 TO4ALAR33496RZ2 339689991 11 REEE
e L o T o T o e e o o T o o e e e e e
%21999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999996J EXp:1,
FRACTION:
71199943181 30317201 3008496201 842336310431 30A328TEZ0AZA1 BRI LTATRERZZAR1 ATARE31 169844998 R0E344 30 T3RZR11841T
B o o e o o o e o ot T o o e o e o = e e
2948R92751 740851 219453950980266044 3200580421 20467754346 962 920424 TEEE 304957351 902268971 632980261 /
RO0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
B o o e o o o e o ot T o o e o e o = e e
TaleTalulaTulaTuTaTuTToToTaTulaTuTaTuTaTuToTuloTaTuTaTuTaTuTaTuToToToTaTaTaTuTaTulaTuToToloTaTalaTulaTuloTuToTuToToTalaTulaTulaTuTaTuTo ol o aTulaTuTaTuTaTuTo ol o aTulaTuTaTuTaTuTa oI ToTAN

| ————  to check againt real partll approx...

LA [N |
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In this second illustration below it accomplished the comparison between the exact value of the imaginary part and the approximate value of the
imaginary part. For this point is on the real axis with an imaginary part of 0, the log is short.

| loglixt - iBEE T —— || (5] | g ]
MR RE(E) EIl0) BF(V) #EIH)

———— to check againt real partll approx...

(&b

U,

my floatli==II) [approx: T roxilen:l):
, exp:0, [FRACTION: 0 / 1]

MPFE walue of Amaz:
;D_Theck againt 1maginary partll...
NPFE value|of imasz approx:000000000000000000000000000000000, exp:0, [FRACTION: 0 / 1]

———— to check againt imaginary partl]l approx...

z2 T({len:d4098) :

ool 21110 00ANTAAT2ATOOANTNT AN A AT A OSSO0 SO AT OTO2C A1 021 0001 A2 AT A2 AT AT SO0 AT SndIm e 2T A

Finally in this third illustration below it accomplished the comparison between the exact value of the square of z's modulus and the approximate value
of it.

[ ) logLtxct - 3322t v lmnl=e |

MHHE REE B0 ZFFNV) EEH)

z2 T(len:d098) : -
2. 02TTT2Te5611168049794734020409974944011 290250531 368193090659T2783641261 3291455545434 T1 251 6 2 (kstetoteoteateabeabeabateote
z2 I _approx(len:2082):
2. 02TTT2Te5611168049794734020409974944011 290250531 368193090659T2783641261 3291455545434 T1 251 6 2 (tetoteoteateabeabeabateote
z2 I1(1en:4097, point pos r:4096): _ __
SNETTTTRIATTIARN49T 94T R4R 2 0409974944011 2902305513881 9R090R5AT Y TRAAEA]T YA RA91 d3REAR 34 T1 251 R 7 (koo atatototeotot|
£2 11 approxilen:2081, point pos r:2080):
P0ZTTT276361116304979473462040997494401129023053136319509065972785641261829145354543471 251 £ 2 (kketetetofotteaeoota |
I. THEEE NUNBEES LENGTHS AEE:Z050,1, 4093
I. THEEE NUMBERS LENGTHS (approx) ARE:1042,1, 2082
II. THEEE NUNBEES LENGTHS AEE:20449,1, 4097
THREE NUMBERS LENGTHS (approx) ARF:1041, 1, 2081
of
2 E02TTT2Te3611168049794734620409974944011 2902305315681 930906597 27853041261 829143854545471 25162041 090555
o o o o = o o = o S e e e
?QQQQQQQQQqqqqqg999999999999999999999999999999999999999999999999999999999999999999999988j exp:l,
FRACTION:
1127986041 82602821 36R34848556404091 2721 39602208641 53226 TR5280 7279344836047 TH38T03624 7238555642648 796 TEESET
o o = o = o = e o e e e
4538704740341 7244267647071 785523201 /
LRLEZGR464026800345TTREER1Ta5531010160548039951 155829076383 531804221 8011087034 79548963570T89753127755141016
o T o o o o = o e e e
O000000000000000000000000000000000]
———— 1o check azaint z_abs squarell...
YFFE walue of |z 2
(approx) :2027T72763R11168049794734620409974944011290230531 3681 9309085972783R41 2813291 438545434 71251620410
T e e e
999999999999999999999999999999999999995, exp:1, [FRACTION:
L0694319090279201 24486836551 024937300028 2250763284 20452 726649519591 0315457 28590563586 TR1 29051 027263844365
sfesfeofeoteotesbesbeabetesteoteoteoteoteobe bt ot obeoteoteobeobsbetesteoteoteoteobeobe bt bbbttt ot bbbttt bttt bt bbbttt bttt bbbttt bbbkt skttt bbbk
2L AgT 296028 T0ER3TI2TTI0T01TE3933924649T00022TR1LEBT08264642155503410873928894899968121 /
2500000000000000000000000000000000200000000000000000Q000000000000000000000000000000A0000000Q000000000
o T o o o o = o e e e
O000000000000000000000000000000000000000000000000000000000000000000000000000000000000]

———— 1o check againt z_abs squarell approz...

Tterate 10 rounds.
(1, ]

1

The unmarked text part with words like "[FRACTION ./ ___]" in these illustrations is the representation in fraction form that GMP used, i e
numerator / denominator, and it is irreducible.

This third program goes without GUI and got only pure calculation. The code now lies in main.cpp instead of View.cpp. All the newly added functions
for GMP implementation begin with "GMP _" and lie in two files(mpfr_inc_h and mpfr_lib.c)(as above said, named after "mpfr"). | ilustrate it below what
to do to turn the pseudo-code before to GMP code:

(pseudo-code:) (corresponding GMP implementaion)
pe0(left );
v{above);
a("2")
threshold("4.0"); GMP _init_calc()
for(1=0; 1 < w; 1++)
{
v = above; GMP reszet v0{)
for(j=0;3 <h; j+1)
{
x("0"); GMP reset x()
v("0"); GMP_reset v()
k=0;
while(k++ < MAX ITER)
{
real = x*x-v*v +x0; GMP _calc_real()
tmag = a*x*y +v0; GMP_calc_imag()
z_square = real®real + imag®*imag; GMP cale z square()
1f{z_square = threshold) 1if{lGMP _cmp threshold() = 0)
break:
else{
x = real; GMP set x as real()
YV = 1mag; GMP _set v_as imag()
¥
¥
v0 = v0 - delta; GMP_update_v0()
¥
x() =x0 + delta; GMP _update x0()




VE clear )

The only modification to my floating-point class code this third program made is: when an approximation is made to the (intermediate) calculated
result of my floating-point implementation, to continue to compare the results and check the consistency of the two implementations, | need to make
an corresponding approximation to the (intermediate) calculated result of GMP implementation. That is, | add one more parameter(p_pos) into the
truncate_floatll() function to tell GMP implementation side: which decimal place | truncated at here, so that you must truncate correspondingly at that
same decimal place of your value there.

Code before and after modification:

. my_mandel_test_my_floats_vs2013\my_floats.h - =~ O, mandel_with_mpfr_test_vs2013\my_floats.h - = -
4210 =7 CC++,CHObCEHE ~ ANSI ~ PC 4303 F7F CC++CEOBbCIEME ~ ANSI = PC
extern bool are_floatl_wersus_floatII_equal( float_numberd& fI, extern bool are_floatI_wersus_floatII_equal({ float number& fI,

¢ Jflextern "C" {
extern int chtoi{char ch)
extern char itoch(int i )

extern int chtoi{char ch); H
extern char itoch{int 1 }; 3

& /1)
#if 1 #if 1
Jlextern floatII& /fextern floatII&
extern floatII +truncate floatII(int x_precision, int y_precisic extern floatII +truncate floatII(int x_precision, int y_precisic
int min_precisicn_to_truncate, int min_precision_to_truncate,
floatII& f, floatII& T,
int add_to_tail precision); e int add_to_tail precision,
L int* p_pos);
extern float_number  truncate_fleoatI (float_number& x, float_n extern float_number  truncate_floatI (float_number& x, float_n
int min_precisicn_to_truncate, int min_precision_to_truncate, -
float_number& f, float_number& f, 1
int add_to_tail precision); int add_to_tail precision}; .
#endif #endif .
#endif//_MY_FLOATS H ‘ ‘ #endif//_MY_FLOATS_H B
14 < [ b 67: 14 4 [am r

The complete code of the above right side:
mandel with mpfr test vs2013'my floats h:

extern floatII truncate floatII(int x precision, int y precision, int delta precision,
int min_precision to_ truncate,
floatII& f,
int add to tail precision,
int* p pos);

The corresponding madification to my_floats.cpp will be seen soon below.
Currently truncate_floatl() is not modified. Because the results of floatl and floatll are the same, | only need to use one of them, currently | use floatll.

After GMP implementation was added, | found and corrected one (preliminary level, --( ) bug in my_floatl.cpp(my_floatll.cpp i1s the same):

D A\blog_fractal\my_floatlandIlymy floatlcpp = D \blog_fractal\mandel_with_mpfr_test\my_floatl.cpp - =
2016/5/27 15:29:08 26,980 ==77 C.C++,CHEObICIERE A 2017/2728 13:57:24 31782 =77 CC++,CHEObCIEME ~ ANSI -

bool is floatI zero(const float numberf ) bool is floatI zero(const float numberf f)
i 1
char* p = f.number; char* p = f.number;
= o
L while(*p++ != "\@") L while(*p != '"“@')//bug code: while(*p++ != '\@8")
{ {
if( !(*p=="e" || *p==".")) if( (*p=="0" || *p=="."))
break; break;
= | else
L L s
¥
if(*p == "\2") if(*p == "\2")
return true; return true;
else else
return false; return false;
¥ }

Why we need approximation yet? Because with absolutely accurate computation(not a bit approximation) the need for storage for the intermediate
decimal result is incrementing exponentially by 2 to the power of the times of iteration. It counts in K for 10 times of iteration, and counts in M for 20
times of iteration. For 30 times of iteration it counts in G already. Besides, with computation like this on PC one becomes to feel a little slow already
after about 10 times of iteration (i.e. a magnitude of 1000 digits times 1000 digits). So | have to do some approximation in the actual computation, for
example, to let the need for storage increment linearly with the times of iteration. And take the speed of getting result into consideration.

FPresently the algorithm for doing approximation | considered is roughly like this:

Step (D). Specify a requirement for the promotion of precision, e.g., 16 more decimal places of accuracy than the old ones;
Step (1) Specify the decimal places of accuracy, need to take these into consideration:

(A) the precision of starting coordinate,

(B) the precision of the step value between coordinates,

(C) incrementing with the times of iteration(?) ;

Step (2): Does the calculated result exceed the precision requirement? If not, do not modify the value of the result;

Step (3): If the answer is "yes” in step (2), count to the wanted decimal place of accuracy, then:

(A) If there i1s already significant digit in its front, then add at most e.g. 16 more decimal places after it.

(B) if there isn't any significant digit(i.e. all are '0's) in its front, unless being of value 0, find the first significant digit(non-zero one) after it,
then add at most e.g. 16 more decimal places after that digit.

Its implementation:(taking floatll as the example) ((Highlighted lines of code is the modification of this function as said above ))
mandel with mpfr test vs20153my floatll cpp:

floatII truncate floatII(int x_precision, int y precision, int delta precision,
int min_precision_to_ truncate,
floatII& f,
int add _to tail precision,
int* p pos)

*p_pos = 8;
int truncate part len = @;

int i;




AALIT(T.pO1INT_pPos_r < Min_praclsion_Tto_truncate)
ff return |;

floatIIl approximation = f;
int max = x_precision ;

max = y_precision > max ? y_precision : max ;
max = delta precision > max ? delta precision : max ;

if(f.point_pos_r <= max)
return approximation;

max += add to tail precision;
if(f.point_pos r <= max)

return approximation;
else

truncate part len = f.point pos r - max;

max -= add to tail precision;
/fgo to NO. max' after ".' of f
II."*

result (= x * y)} ((precison of a by b ))
(a) common case: (some non-'@" ahead)
8.8200328840305897 6280008000081 3 B8N CUOOCOONNK
(b} rare case: (all '@'s ahead)
8.8080086000000000000000080130008808580BX X HNNXK
or ©.8080000008880002000000008130 (shorter vs. above)
*/
int len = strlen(f.digits);
int int_len = len - f.point_pos r;
char* p = approximation.digits;
bool is there nonzero = false;
for{i = 8; i < (int_len + max); i++)

if(p[i] != '@")
{
is there nonzero = true;
break;
¥
}
if(is _there nonzero)
{
approximation.point_pos_r -= truncate_part_len;
int len2 = len - truncate_part_len;

memset (&p[len2], @, truncate_part_len);
pl[len2] = "\B"; //clear again ( redundant though)

*p_pos = len2 - int_len + 1;//*p pos = &p[len2] - &p[int_len] + 1;
return approximation;// (.)

/7531415
/8123456
) -
else //TODO: to log and check this rare/corner case.
{
for(i = (int_len + max); 1 < len; i++)
if(p[i] != '8")
break;
I
if(i == len)
{
floatII  result(™e");
return result;
I
else
{
if( (len - i -1) <= add to_tail precision )
return approximation;
else
{
truncate part len = len - (i + 1 + add_to_tail precision);
approximation.point_pos r -= truncate part len;
memset (&p[i+l+add to tail precision], @, truncate part len);
*p pos = i+l+add to tail precision - int_len + 1;
return approximation;
¥
h
I

The modification needed for the code that includes approximation:

for(i=0;1=w;i++)

{
vl = above;
for(j=0;j <h: j++)

{

==0;

v=0:

k=10

while{k++ = MAX _ITERATION)

{ fUII =50 GMP =31

real =x*x - v*v + x0;
<iﬂ'ﬂ-l : real(approx) tuncate_floatl/ IT GMP_truncate_real( )

imag = 2*x%*vy +v{;

1Ll : imag(approx) truncate_floatl’ II GMP_truncate_imag( )
Zz_square = real*real + imag¥imag;
ifi(z_square = threshold)

breal:
else{
x =real; —x—real x =real(approx);
y = Imag; —y=timag;y = imag(approx):
¥




w0 =v0 - delta;

h
x0=x0 + delta;

The implementation of GMP truncating function in it (taking GMP_truncate real() as the example; the GMP_truncate_imag() code just replace "real”
with "imag".)

mandel with mpfr test vs2013mpfr lib.c:

void GMP_truncate real(char* str_numerator, char* str_denominator,
char®* str_gmp mpfr, int* p_exp, int mpfr_precision,
int len, int trunc_pos)

mpz_t numerator;
mpz_t denominator;

mpgq_t a;

mpfr_t f1, f2;
mpfr_exp t exp;

mpz_init{numerator);
mpz_init{denominator);

mpq_init(a);

mpq_set({gmp_real approx, gmp_real);

if(trunc_pos == 8)
{

}

else

{

/freturn;

int n;
char® str;
char®* p;
mpz_set(denominator, mpgq_denref{gmp real approx));
ffgmp_printf("denominator is %Zd\n", denominator);
mpg_set si(a, 18, 1);
n = @;
while( mpz _cmp si{denominator, 1)} != &)
{
mpg_mul{gmp real approx, gmp real approx, aj);
/fgmp_printf("%#040Qd\n", gmp_real_ approx);

mpz_set({denominator, mpg_denref(gmp real approx));
n++;

¥

f/printf("\n multiplied by 18~ %d\n" , n);
mpz_set(numerator, mpgq_numref{gmp_real_ approx)).
ffgmp_printf("numerator is ¥Zd\n", numerator);

str = (char*)malloc(len+16); //some more space
memset(str, &, len+16);//buggy: memset(str, B, sizeof(str));
mpz_get str(str, 18, numerator);
ffprintf("str got:¥s\n", str);
p = str + strlen(str);
p -= (n-trunc_pos)+1; {/53.1415926
while( *p != "\@")
*p++ = '8°;

mpq_set str({gmp real approx, str, 18);
mpq_canonicalize{gmp real approx);
while{n > @)

mpg_div({gmp real approx, gmp real approx, a);
figmp_printf("%#e4e0d\n", approx);
n--;

¥

free{str);

}

mpz_set(numerator, mpg_numref{gmp real approx));
mpz_get str{str_numerator, 18, numerator);

mpz_set({denominator, mpg_denref{gmp_real approx));
mpz_get str({str_denominator, 18, denominator);

[ ffor visualizing the string
mpfr_init2(f1, (mpfr_prec t)mpfr_precision);
mpfr_init2(f2, (mpfr_prec t)mpfr precision);

mpfr set z(fl, numerator , MPFR_RNDZ);

mpfr set z(f2, denominator, MPFR_RNDZ};

mpfr div(fl, f1, f2, MPFR_RNDZ);

mpfr _get str(str_gmp mpfr, &exp, 18, &, f1, MPFR_RNDZ);
*p exp =({int)exp;

mpfr _clear(fl);

mpfr clear(f2);
mpz_clear{numerator);
mpz_clear({denominator);

mpq_clear{a);

by

The logic of this implementation of truncation is such: since all of the fractions in my program are designed to be terminating decimals(not repeating
decimals, needless to say irrational numbers), as to a calculated result which has the form like "53.1415926" etc_, let it times 10 to the power of an
incrementing integer variable(which will be equal to its decimal places) until the product becomes an integer (the rule for judgement is the
denominator becomes 1), then go to the position to truncate as specified, set the digit itself and those after it to "0, use this new string to construct a
new mpg_t type number, then divide this new number by 10 to the power of the corresponding number. Thus we accomplished the truncation of the
calculated result.

In the function code, the highlighted line 30 obtained the denominator, line 32 is the multiplier 10 to be used, we can see the loop of multiplying by 10
and checking if the denominator becomes 1 at line 34 and line 36. Line 43 obtained the current numerator, the highlighted line 48 obtained the current
string of the numerator. Line 50 to 53 set the part to be truncated of this string to all '0°. After constructing the new GMP fraction at line 55, we can see
the highlighted line 57 and line 29 loop to divide the new number by 10 to the power n.




S0 1ar, we naven i 10oKed at the additon and muittiplicaton code yel. 1nougn s only primary scnool aritnmetc, Deliow we'll [ake a rougn 100« at It
Although on the above the GMP shows it is really powerful so maybe to use GMP(and MPFR) to do more computation will be a better choice later
(because It allows people to use fractions, that is, repeating decimals, and other functions etc. that | myself haven't got ), it might be better to have one
more kind of implementation in parallel when available. However, if not available, | can just use GMP.

Here | take the floatll class as the example, the implementation code of floatl class is longer, the floatll code is more concise, both of their algorithms
are the same. There isn't very much to say about addition:
mandel_with_mpfr test vs2013'my_floatll cpp:

floatII fleoatIl::operator+ ( floatII& f2)

{
//TODO: @?

int sign, pos;

ffalign point

floatII f1 = *this;

int int lenl strlen(fl.digits) - fl.point pos r;

int int len2 strlen({f2.digits) - f2.point_pos r;

int frac lenl = fl1l.point pos r;

int frac_len? f2.point_pos r;

int max_int len = int lenl »= int lem2 ? int lenl : int len2 ;
int max_frac_len = frac_lenl »= frac_len2 ? frac_lenl : frac leni;

floatII 1 old f1;
floatII 2 old = f2;

{fpos

pos = max_frac_len;

int len = max_int len + max frac_len;

char* s1 = fl.extend zero2( max_int len-int lenl, max frac_ len-frac_lenl);
char* 52 = f2.extend zero2( max_int len-int len2, max frac_len-frac_len2);
if(fl.minus == f2.minus)

{

f/minus assign
sign = fl.minus? -1 : +1;

int* carry = (int* Jmalloc{ (len+l) *sizeof({int));
char* r (char* Ymalloc{ len )};
memset{carry, 8, (len+l)}*sizeof(int));

char* q = sl+len-1;
char* p = s2+len-1;
int m;

int k = 8;
while(q »= s1)

{

m = chtoi{*q) + chtoi(*p) + carry[k];
if(m »= 18)

carry[k+1] += 1;
r[k] = itoch({m-18);

}
else
{
r[k] = itoch(m);
}
p--s
q--3
kK++;

¥

char* str = (char* )malloc(len+1+1); //doesn't care if more
int i = @;

int j;
if{carry[k] » 8)
str[i++] = itoch(carry[k]);
for(j = 8; j < len; j++)
str[i++] = r[len-1-j];

str[i] = "\@°

-

floatII str _result(str, sign, pos);

free(str); //? do it in destructor?

free(r);
free(carry);
free(sl);
free(s2);
return str_result;
}
else
{

f/to decide sign
char* p = s1;
char* q = s52;

while(*p != "\e') // && *gq != "\@’
if(chtoi(*p) != chtoi(*q))
break;
ptts
q++;
}
if(*p == "\8")
{
free(sl);
free(s2);
floatII f4("e");
if(MY_DEBUG) printf("they are equal,minus result is 8\n");
return f4;
}
else
{

bool t = chtoi(*p) > chtoi(*qg) ? fli.minus : f2.minus;
sign = t? -1 @ +1;

char* big
char* small

(*p » ®*qg) ? s1 : s2;
(*p » *q) ? s2 : s1;

big + len-1;
cmall + len-1;

P
q




int* borrow

(int* Imalloc( (len) ¥sizeof(int));

int n;

char* r = {char* Ymalloc{ {(len));
memset (borrow, 8, (len)*sizeof(int));
int k = 8;

while(p »= big)
if( (chtoi(*p) + borrow[k]) »= chteoi(*q))

n = chtoi(*p) + borrow[k] -chtoi(*g) ;

I
else
{
char* 1 = p-1;
while( chtoi(*1) == 8 )
1
*1 = '9°;
1--;
}
borrow[k] = 18;
*¥1 -=1;
n = chtoi(*p) + borrow[k] - chtoi(*g) ;
}
r[k] = itoch(n);
P--3
qQ--;
ket

}
//TODO: to remove leading @s in integer part

char* str = (char* Jmalloc(len+l);
int 1 = 8;

int j;
for{j = 8; j < len; j++)
str[i++] = r[len-1-j];

str[i] = "\8';
floatIl str_result2(str, sign, pos);
free(str);

free(r);
free(borrow);

free(sl);
free(s2);

return str_result2;

hy

It prepares to align the decimal point beginning from the highlighted line 7. Line 20 obtained the position of the decimal point. Line 24 and 25
supplement '0's in an aligning style. Line 27 is about to do addition if the signs of the two numbers are the same. Its next line of code begins to do the
addition, recording the carry value. Beginning from line 57 it prepares for the result string, which reads from left to right, while the addition itself is done
from the lower to the higher, 1.e_, from right to left. Line 66 constructs the object of fll class using the string and returns from the function. Line 84 1s
about to do subtraction for the signs of the two numbers are different. First it does comparison between their absolute values to decide which one is
larger and what the sign of the difference will be. Line 94 shows that they are equal so the code returns 0. Line 104 is about to subtract the smaller
absolute value from the larger one. Next it does subtraction, borrowing, etc. When done it likewise constructs the string, then constructs the object of fll
class. Thus done.

The multiplication costs two "™ operator overloading functions, however. The multiplication of two objects of the class is transformed to first doing
multiplications of one object of the class and one integer vanable(i.e., a number multiplied by every digit of another number), then summing them up
after shifting their decimal points correspondingly. (For example, if we got to calculate f; * fa, in which f is of the form "xyzwr st0", then the result
would be

result = f; #x %« 10™  (m=max_int_len-1)
+ fixyx10™m71
+ fixzx10m2
+. ..

+ fixtx1072

+ f1#0%107%  (-3=-max_frac_len)

). Thus | used two operator overloading functions.
mandel with mpfr test vs2013'my_floatll cpp:

floatII floatII::operator* (int m) // 8<=m<=0
{

f/TODO: @2

int sign, pos;

floatII& f1 = *this;
cign = fl.minus? -1: +1; //does not care

//pos
pos = fl.point pos r; //doesn’t change

int len
char* s

strlen{fl.digits);
fl.digits;

int* carry {(int* Jmalloc{ (len+1)} *sizeof(int));
char* r {char* Ymalloc{ (len));

memset{carry, 8, (len+l)*sizeof(int));

char* q = s+len-1;

int d;

int k = 8;

while(q »= s)

d = chtoi(*q) * m + carry[k];
if(d »= 18)

carry[k+1] += d/18;
d =d % 18;

}
r[k] = itochid);

q--;

ey




. 4

}

//copied from add operation code part
char* str = (char* )malloc({len+l+1); //doesn't care if more
int 1 = 8;
int j;
if{carry[k] > 8)
str[i++] itoch(carry[k]);
for(j = 8; j len; j++)
str[i++] r[len-1-j];
str[i] = "\8°

oA

-

floatIl str_result(str, sign, pos);

free(str); //? do it in destructor?
{/fcopied from add operation code part -- end

free(r);
free(carry);

return str_result;

floatII floatIl::operator* (const floatII& f2)

1
//TODO: @2

int sign; // pos;

floatII& f1 = *this;
if(fli.minus == f2.minus)
sign = +1;
else
sign = -1;

char*p = fi1.digits;

char*q = f2.digits; //{choose the shorter to be multiplier?)
floatII multi("e");

int len2 = strlen(f2.digits);

for(int i = 8; 1 < len2; i++)

{

floatII t1

f1 * chtoi(q[i]);

floatII €2 = shift floatII{tl, len2 - f2.point pos r - 1 - i};
multi = multi + t2;

¥

multi.minus = (sign==-1}? true : false;
return multi;

j

floatITI& shift floatII (floatII& +F, int m)

1
if(m > @)

if{m »= f.point_pos_r)

{
f.extend_zero(®, m - f.point_pos_r);
f.point_pos_r = 8;

}

else
f.point _pos r -= m;

else if(m < @)
{

int int len = strlen(f.digits) - f.point_pos r;
if(-m »= int_len)
f.extend zero{-m-int len+l, 8);

f.point_pos r += -m;

}

return T;

¥

The highlighted lines are those illustrated above. In the first function it does carrying similar to that in addition.

Having long been a ¢ programmer up until now, | know very little about c++. It looks more natural using operator overloading in c++ to operate on the
floating-point number class. However, it feels more portable for c libraries than c++ libraries when one is using GMP.

Once | found the memory usage of the third program soon went too high, and it kept increasing. After debugging | found it out that some pieces of
code modifying "malloc/free” as "new/delete” led to this problem. This 1s not memory leak yet, for the memory Is restored as soon as one closes the
program. But under such memory usage the program will soon be not able to run. It seems the memory allocated through "new" has not been
returned to the OS5 quickly after "delete”, while "free" does. Since the program does large amount of computation persistently, no memory leak is
crucial to the program.

It is rather good that the result of my implementation is consistent with GMP computation, using not very much code. GMP uses the fraction form, this
enlarges the range of operation greatly compared to using decimal form by me. Surely it got a more complicated algorithm. The algonthm of mine is
only for multiplication and addition, so it is just suitable for computing Mandelbrot set(l don't know if it is well suitable for computing Julia set.) and may
not be enough for computation of other fractals.

Besides Win/\VVC, | would like to implement it on Linux/GTK.

| ever thought it was best to distribute the programs on ReactO5. But | tried ReactOS on VMWare and found its compatiblitly and stability were not
suitable for actual use yet. ...

(P.S.: The precision in MPFR means binary precision, this may not easily match the decimal precision I adopted
in my flocating-point implementation.)
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