${\overline p = {1 \over {4 \pi \epsilon_{0}}} { {e^2 a^2 \omega^4} \over {3 c^3} }}$
(电动力学教科书)
( $\psi = {1 \over {4 \pi \epsilon_{0}}} w $ ?)
((Sturm-Liouville问题也有名为Parseval等式的公式,见《古今数学思想》))
积分区域扩大为矩形
Rayleigh-Jeans公式
$\psi_{\nu} d \nu = {8 \pi kT \over c^3 } \nu^2 d \nu $
读到吴大猷在他的著作《理论物理-量子论与原子结构》p18(附录2 Rayleigh-Jeans定律)中写道:
“
Rayleigh-Jeans定律亦可纯由电动力学得之。
一个一维单谐振子的辐射率为:
$$
\begin{aligned}
p & = { \omega_{0}^4 (ea)^2 \over 3c^3 } \\
& = { 2 \omega_{0}^2 e^2 \over 3mc^3 } \epsilon, \space \space \space \space \space \space \epsilon = {1 \over 2} m(a \omega_{0})^2
\end{aligned}
\tag{I-32/I-32a}
$$
$\epsilon$ 为振子之能量。
兹计算一个单谐振子在电磁场吸收能量的率。设振子频率为$\omega_{0}$,同(10)式,其在电场E之运动方程式为
$$
\begin{aligned}
\ddot{x} + \omega_{0}^2 x = {e \over m} E_{x}
\end{aligned}
\tag{I-33}
$$
设在$ 0 \leqslant t \leqslant T $间,$\vec{E}$ 之x分量$E_{x}$可作Fourier变换如下
$$
\begin{aligned}
E_{x}(t) & = {1 \over 2\pi} \int_{- \infty}^{\infty} f(\omega) e^{i \omega t} d \omega \\
f(\omega) & = \int_{0}^{T} E_{x}(t) e^{-i \omega t} dt \\
E_{x}(t) & = 0 \space \space \space \space \space \space {t \lt 0} \space \space \space {t \gt T}
\end{aligned}
\tag{I-34}
$$
$E_{x}(t)$为一实数之条件为
$$
\begin{aligned}
f^{*}(\omega) = f(- \omega)
\end{aligned}
\tag{I-35}
$$
$E_{y}(t)$、$E_{z}(t)$分量亦同此。按电动力学,此电磁场之辐射能密度$\psi$为下列平均值(对时间作平均)
$$
\begin{aligned}
\psi & = {1 \over {8 \pi} } {\overline {(E^2 + H^2)}} = {1 \over {4 \pi} } {\overline {E^2}} \\
& = {3 \over {4 \pi} } {\overline {E_{x}^2}}
\end{aligned}
\tag{I-36}
$$
由(34)式,即得:
$$
\begin{aligned}
{\overline {E_{x}^2}} & = {1 \over T} \int_{0}^{T} {E_{x}}^2 dt \\
& = {1 \over {2 \pi T}} \int_{0}^{T} E_{x} dt \int_{- \infty}^{\infty} f(\omega) e^{i \omega t} d {\omega} \\
& = {1 \over {2 \pi T}} \int_{- \infty}^{\infty} f(\omega) d {\omega} \int_{0}^{T} E_{x} e^{i \omega t} dt \\
& = {1 \over {2 \pi T}} \int_{- \infty}^{\infty} f(\omega) f^{*}(\omega) d {\omega} \\
& = {1 \over {\pi T}} \int_{0}^{\infty} {|f(\omega)|}^2 d \omega
\end{aligned}
$$
故能量密度在$\omega$与$\omega + d \omega$间者为$(\omega = 2 \pi \nu)$
$$
\begin{aligned}
\psi_{\omega} & = {3 \over {4 \pi^2 T}} {|f(\omega)|}^2 \\
或 \psi_{\nu} & = {3 \over {2 \pi T}} {|f(\nu)|}^2
\end{aligned}
\tag{I-37}
$$
(33)方程式之解为
$$
\begin{aligned}
x(t) & = {e \over {\omega_{0} m}} \int_{0}^{t} E_{x}(\xi) \sin{ \omega_{0} } (t - \xi) d \xi \\
x(0) & = \dot{x} (0) = 0
\end{aligned}
\tag{I-38}
$$
$E_{x}$对振子每秒钟所作之功为
$$
\begin{aligned}
\Delta{\omega} & = {e \over T} \int_{0}^{T} \dot{x} E_{x} dt \\
& = {e^2 \over {mT} } \int_{0}^{T} E_{x}(t) dt \int_{0}^{t} E_{x}(\xi) \cos{ \omega_{0} } (t - \xi) d \xi \\
& = {e^2 \over {mT} } \int_{0}^{T} E_{x}(\xi) d \xi \int_{\xi}^{T} E_{x}(t) \cos{ \omega_{0} } (t - \xi) dt \space \space \space \space \space \space \space \space \dagger \\
& = {e^2 \over {2mT} } \int_{0}^{T} E_{x}(t) dt { \left \{ \int_{0}^{t} + \int_{t}^{T} \right \} } E_{x}(\xi) \cos{ \omega_{0} } (t - \xi) d \xi \\
& = {e^2 \over {4mT} } { \left \{ {\int_{0}^{T} E_{x}(t) e^{i \omega_{0} t} dt \int_{0}^{T} E_{x}(\xi) e^{-i \omega_{0} \xi} d \xi + \int_{0}^{T} E_{x}(t) e^{-i \omega_{0} t} dt \int_{0}^{T} E_{x}(\xi) e^{i \omega_{0} \xi} d \xi } \right \} } \\
& = {e^2 \over {2mT} } {|f(\omega)|}^2 \space \space \space \space \space \space \space \space \text{由(34)} \\
& = {{\pi e^2} \over {3m}} \psi_{\nu} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \text{由(37)}
\end{aligned}
\tag{I-39}
$$
在稳定状态下,单谐振子的辐射率(32)必与其吸收能率(39)相等,亦即
$$
\begin{aligned}
\psi_{\nu} = { {8 \pi \nu^2} \over c^3 } \epsilon
\end{aligned}
$$
如以古典物理之“能之等分配律”$\epsilon = kT $值用于此式,即得Rayleigh-Jeans定律。
$\dagger$ 注:
$ \int_{0}^{T} E(t)dt \int_{0}^{t} E(\xi) \cos \omega (t - \xi) d \xi $
积分乃左图横线之面积,
$ \int_{0}^{T} E(\xi)d \xi \int_{\xi}^{T} E(t) \cos \omega (t - \xi) dt $
积分则系右图竖线之面积。故上二式相等。
”
[参考]
《理论物理-量子论与原子结构》吴大猷
Men of Physics: Lord Rayleigh - The Man and his Work by Robert Bruce Lindsay
https://en.wikipedia.org/wiki/John_William_Strutt,_3rd_Baron_Rayleigh
https://en.wikipedia.org/wiki/Rayleigh-Jeans_law
Advanced Concepts in Quantum Mechanics (Appendix 2.A) by Giampiero Esposito (p46)
据说Rayleigh在1900年根据能量均分定理导出了今天所知的Rayleigh-Jeans定律;在1905年Rayleigh和Jeans又给出了更完整的推导和微小修正。
我没找到原论文(谁能提供将非常感谢)。不知其论文是否用这里吴大猷所说的纯电动力学的方法。
未找到这里所说的(10)式。
(密度对全空间体积平均?)
( $ E_{x}$, $ E_{y}$, $ E_{z}$ ?)
傅里叶变换有parseval等式
$$
\begin{aligned}
\int_{-\infty}^{\infty} {|f(\omega)|}^2 d \omega
\end{aligned}
$$
$$
\begin{aligned}
= 2 \pi \int_{-\infty}^{\infty} {|g(x)|}^2 dx
\end{aligned}
$$
$$
\begin{aligned}
\psi & = {3 \over 4 \pi^2 T }\int_{0}^{\infty} {|f(\omega)|}^2 d \omega \space \space \space \text{;} \\
& = \int_{0}^{\infty} \psi_{\omega} d \omega \\
& = \int_{0}^{\infty} \psi_{\nu} d \nu
\end{aligned}
$$
得出这个方程式的这个解很厉害。我不知道这个方程是怎样解的;只会验证这个解,用数学分析中含参变量的积分的求导公式:
$$
\begin{aligned}
{d \over dx } \int_{\alpha (x)}^{\beta (x)} f(x,y)dy
\end{aligned}
$$
$$
\begin{aligned}
& = \int_{\alpha (x)}^{\beta (x)} { {\partial f(x,y)} \over {\partial x}} dy \\
& + f[x, \beta (x)] \beta^{\prime}(x) \\
& - f[x, \alpha (x)] \alpha^{\prime}(x)
\end{aligned}
$$
傅里叶变换实数形式:
$$
\begin{aligned}
f(t) = {1 \over \pi } \cdot
\end{aligned}
$$
$$
\begin{aligned}
\int_{0}^{\infty} d \omega \int_{- \infty}^{\infty} f(\tau) \cos \omega (t- \tau) d \tau
\end{aligned}
$$
我使用的版本原文将后一式中的
$$
\begin{aligned}
E(t) \cos \omega (t - \xi) dt
\end{aligned}
$$
误为
$$
\begin{aligned}
E(t) \cos \omega (t - \xi) d \xi
\end{aligned}
$$